Notes on the Eigensystem of Magnetohydrodynamics

The eigenstructure of the equations governing one-dimensional ideal magnetohy-drodynamics is examined, motivated by the wish to exploit it for construction of high-resolution computational algorithms. The results are given in simple forms that avoid indeterminacy or degeneracy whenever possible. The unavoidable indeterminacy near the magnetosonic (or triple umbilic) state is analysed and shown to cause no difficulty in evaluating a numerical flux function. The structure of wave paths close to this singularity is obtained, and simple expressions are presented for the structure coefficients that govern wave steepening.

[1]  Phillip Colella,et al.  A higher-order Godunov method for the equations of ideal magnetohydrodynamics , 1992 .

[2]  C. Wu,et al.  Effects of dissipation on rotational discontinuities , 1988 .

[3]  Paul R. Woodward,et al.  Extension of the Piecewise Parabolic Method to Multidimensional Ideal Magnetohydrodynamics , 1994 .

[4]  A. Jeffrey,et al.  Nonlinear wave propagation , 1978 .

[5]  Kenneth G. Powell,et al.  Axisymmetric modeling of cometary mass loading on an adaptively refined grid: MHD results , 1994 .

[6]  R. D. Blandford,et al.  Accretion Disc Electrodynamics — A Model for Double Radio Sources , 1976 .

[7]  David G. Schaeffer,et al.  The classification of 2 × 2 systems of non‐strictly hyperbolic conservation laws, with application to oil recovery , 1987 .

[8]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[9]  Dinshaw S. Balsara,et al.  Higher order Godunov schemes for isothermal hydrodynamics , 1994 .

[10]  E. Bruce Pitman,et al.  A numerical study of a rotationally degenerate hyperbolic system. Part I: The Riemann problem , 1992 .

[11]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[12]  B. Sonnerup,et al.  On the structure of resistive MHD intermediate shocks , 1989 .

[13]  C. Wu,et al.  Formation, structure, and stability of MHD intermediate shocks , 1990 .

[14]  J. A. Shercliff One-dimensional magnetogasdynamics in oblique fields , 1960, Journal of Fluid Mechanics.

[15]  E. Isaacson,et al.  The Riemann problem near a hyperbolic singularity II , 1988 .

[16]  Roger D. Blandford,et al.  Structure and evolution of small-amplitude intermediate shock waves , 1990 .

[17]  Mitchell C. Begelman,et al.  Asymptotic structure of hydromagnetically driven relativistic winds , 1991 .

[18]  Phillip Colella,et al.  Higher order Godunov methods for general systems of hyperbolic conservation laws , 1989 .

[19]  Philip L. Roe,et al.  Sonic Flux Formulae , 1992, SIAM J. Sci. Comput..