Finding function in novel targets: C. elegans as a model organism

[1]  James H. Thomas,et al.  Fluoxetine-Resistance Genes in Caenorhabditis elegans Function in the Intestine and May Act in Drug Transport , 2006, Genetics.

[2]  G. Ruvkun,et al.  Functional Proteomics Reveals the Biochemical Niche of C. elegans DCR-1 in Multiple Small-RNA-Mediated Pathways , 2006, Cell.

[3]  J. Lipton Mating worms and the cystic kidney: Caenorhabditis elegans as a model for renal disease , 2005, Pediatric Nephrology.

[4]  J. Vanfleteren,et al.  DAF-2 pathway mutations and food restriction in aging Caenorhabditis elegans differentially affect metabolism , 2005, Neurobiology of Aging.

[5]  T. Shirasawa,et al.  Estrogen, Insulin, and Dietary Signals Cooperatively Regulate Longevity Signals to Enhance Resistance to Oxidative Stress in Mice* , 2005, Journal of Biological Chemistry.

[6]  Petra Ross-Macdonald,et al.  Chemical genetics identifies Rab geranylgeranyl transferase as an apoptotic target of farnesyl transferase inhibitors. , 2005, Cancer cell.

[7]  A. Coulson,et al.  Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans , 2005, Nature.

[8]  J. Sze,et al.  Serotonin (5HT), Fluoxetine, Imipramine and Dopamine Target Distinct 5HT Receptor Signaling to Modulate Caenorhabditis elegans Egg-Laying Behavior , 2005, Genetics.

[9]  E. Liberopoulos,et al.  A review of the metabolic effects of sibutramine , 2005, Current medical research and opinion.

[10]  Frederick M Ausubel,et al.  The worm has turned--microbial virulence modeled in Caenorhabditis elegans. , 2005, Trends in microbiology.

[11]  R. Jagasia,et al.  DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans , 2005, Nature.

[12]  A. Dell,et al.  Glycolipids as Receptors for Bacillus thuringiensis Crystal Toxin , 2005, Science.

[13]  David Harel,et al.  Computational insights into Caenorhabditis elegans vulval development. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  T. Bogaert,et al.  Caenorhabditis Elegans Functional Genomics in Drug Discovery: Expanding Paradigms , 2005 .

[15]  M. Hřebíček,et al.  Characterization of gana-1, a Caenorhabditis elegans gene encoding a single ortholog of vertebrate α-galactosidase and α-N-acetylgalactosaminidase , 2005, BMC Cell Biology.

[16]  Konrad Basler,et al.  A universal method for automated gene mapping , 2005, Genome Biology.

[17]  Kimberly Van Auken,et al.  WormBase: a comprehensive data resource for Caenorhabditis biology and genomics , 2004, Nucleic Acids Res..

[18]  Mehmet Fatih Yanik,et al.  Neurosurgery: Functional regeneration after laser axotomy , 2004, Nature.

[19]  David E Hill,et al.  High-throughput expression of C. elegans proteins. , 2004, Genome research.

[20]  M. Wood,et al.  RNA interference: from model organisms towards therapy for neural and neuromuscular disorders. , 2004, Human molecular genetics.

[21]  C. Mello,et al.  Revealing the world of RNA interference , 2004, Nature.

[22]  Matthew J. Rogers,et al.  SNF-6 is an acetylcholine transporter interacting with the dystrophin complex in Caenorhabditis elegans , 2004, Nature.

[23]  Yuguang Shi,et al.  Lipid metabolic enzymes: emerging drug targets for the treatment of obesity , 2004, Nature Reviews Drug Discovery.

[24]  E. Sonnhammer,et al.  OrthoDisease: A database of human disease orthologs , 2004, Human mutation.

[25]  O. Hobert,et al.  Caenorhabditis elegans ABL-1 antagonizes p53-mediated germline apoptosis after ionizing irradiation , 2004, Nature Genetics.

[26]  P. Delmas Polycystins From Mechanosensation to Gene Regulation , 2004, Cell.

[27]  E. Jorgensen,et al.  The GABA nervous system in C. elegans , 2004, Trends in Neurosciences.

[28]  F. Ausubel,et al.  Caenorhabditis elegans-Based Screen Identifies Salmonella Virulence Factors Required for Conserved Host-Pathogen Interactions , 2004, Current Biology.

[29]  Jean-Marc Simon,et al.  Prednisone reduces muscle degeneration in dystrophin-deficient Caenorhabditis elegans , 2004, Neuromuscular Disorders.

[30]  F. Khuri,et al.  Farnesyl transferase inhibitors: the next targeted therapies for breast cancer? , 2004, Endocrine-related cancer.

[31]  Alejandro Chavez,et al.  Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Mark E. Gurney,et al.  Screening for Presenilin Inhibitors Using the Free-Living Nematode, Caenorhabditis elegans , 2004, Journal of biomolecular screening.

[33]  A. Sluder,et al.  Invertebrate disease models in neurotherapeutic discovery. , 2004, Current opinion in drug discovery & development.

[34]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[35]  M. Vidal,et al.  BRCA1/BARD1 Orthologs Required for DNA Repair in Caenorhabditis elegans , 2004, Current Biology.

[36]  K. Fitzgerald,et al.  Model Organisms in Drug Discovery , 2003 .

[37]  Julian F. Burke,et al.  Whole-Genome Analysis of 60 G Protein-Coupled Receptors in Caenorhabditis elegans by Gene Knockout with RNAi , 2003, Current Biology.

[38]  E. Jorgensen,et al.  Controversies in synaptic vesicle exocytosis , 2003, Journal of Cell Science.

[39]  R. Kamath,et al.  Genome-wide RNAi screening in Caenorhabditis elegans. , 2003, Methods.

[40]  R. Blakely,et al.  Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human α‐synuclein , 2003, Journal of neurochemistry.

[41]  B. Li,et al.  Expression profiling reveals off-target gene regulation by RNAi , 2003, Nature Biotechnology.

[42]  J. Hudson,et al.  C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression , 2003, Nature Genetics.

[43]  C. Kurz,et al.  Caenorhabditis elegans: an emerging genetic model for the study of innate immunity , 2003, Nature Reviews Genetics.

[44]  B. Finlay,et al.  Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening , 2003, The EMBO journal.

[45]  Jing Zhou,et al.  Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells , 2003, Nature Genetics.

[46]  Gary Ruvkun,et al.  Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes , 2003, Nature.

[47]  Martin Holzenberger,et al.  IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice , 2003, Nature.

[48]  T. Kaletta,et al.  Towards Understanding the Polycystins , 2003, Nephron Experimental Nephrology.

[49]  D. Accili,et al.  Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1 , 2002, Nature Genetics.

[50]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[51]  Erik M. Jorgensen,et al.  The art and design of genetic screens: Caenorhabditis elegans , 2002, Nature Reviews Genetics.

[52]  Ting-Fung Chan,et al.  Chemical genomics: a systematic approach in biological research and drug discovery. , 2002, Current issues in molecular biology.

[53]  P. Lomedico,et al.  Chemical genomics: discovery of disease genes and drugs. , 2002, Drug discovery today.

[54]  David H. Hall,et al.  Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Craig P. Hunter,et al.  Systemic RNAi in C. elegans Requires the Putative Transmembrane Protein SID-1 , 2002, Science.

[56]  Christian E. V. Storm,et al.  Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. , 2001, Journal of molecular biology.

[57]  S. Tutton,et al.  Specific Double-Stranded RNA Interference in Undifferentiated Mouse Embryonic Stem Cells , 2001, Molecular and Cellular Biology.

[58]  J. Karp,et al.  Current status of clinical trials of farnesyltransferase inhibitors , 2001, Current opinion in oncology.

[59]  C. Link,et al.  Transgenic invertebrate models of age-associated neurodegenerative diseases , 2001, Mechanisms of Ageing and Development.

[60]  D. Hall,et al.  The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway , 2001, Current Biology.

[61]  H. Horvitz,et al.  Mutations in the Caenorhabditis elegans Serotonin Reuptake Transporter MOD-5 Reveal Serotonin-Dependent and -Independent Activities of Fluoxetine , 2001, The Journal of Neuroscience.

[62]  W. Gish,et al.  Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map , 2001, Nature Genetics.

[63]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[64]  E. Cuppen,et al.  The G-protein beta-subunit GPB-2 in Caenorhabditis elegans regulates the G(o)alpha-G(q)alpha signaling network through interactions with the regulator of G-protein signaling proteins EGL-10 and EAT-16. , 2001, Genetics.

[65]  P. Kuwabara,et al.  The use of functional genomics in C. elegans for studying human development and disease , 2001, Journal of Inherited Metabolic Disease.

[66]  W. Schafer,et al.  Genes affecting the activity of nicotinic receptors involved in Caenorhabditis elegans egg-laying behavior. , 2001, Genetics.

[67]  Leo X. Liu,et al.  Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. , 2001, Genes & development.

[68]  P. Zipperlen,et al.  Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans , 2000, Genome Biology.

[69]  P. Zipperlen,et al.  Functional genomic analysis of C. elegans chromosome I by systematic RNA interference , 2000, Nature.

[70]  Sebastian A. Leidel,et al.  Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III , 2000, Nature.

[71]  B. Kaang,et al.  Characterization of GAR‐2, a Novel G Protein‐Linked Acetylcholine Receptor from Caenorhabditis elegans , 2000, Journal of neurochemistry.

[72]  S. Röhrig,et al.  Presenilin is required for proper morphology and function of neurons in C. elegans , 2000, Nature.

[73]  Wen-chang Lin,et al.  Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. , 2000, Genome research.

[74]  J. Drews Drug discovery: a historical perspective. , 2000, Science.

[75]  G. Ruvkun,et al.  Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant , 2000, Nature.

[76]  K. Kornfeld,et al.  A local, high-density, single-nucleotide polymorphism map used to clone Caenorhabditis elegans cdf-1. , 1999, Genetics.

[77]  Paul W. Sternberg,et al.  A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans , 1999, Nature.

[78]  케서린 모르티에르,et al.  Characterisation of gene function using double stranded rna inhibition , 1999 .

[79]  William J. Ray,et al.  A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain , 1999, Nature.

[80]  M. MacDonald,et al.  Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[82]  P. Sternberg,et al.  Genetics of RAS signaling in C. elegans. , 1998, Trends in genetics : TIG.

[83]  B. Lakowski,et al.  The genetics of caloric restriction in Caenorhabditis elegans. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[84]  C. Mello,et al.  RNAi in C. elegans: Soaking in the Genome Sequence , 1998, Science.

[85]  A. Fire,et al.  Specific interference by ingested dsRNA , 1998, Nature.

[86]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[87]  R. Durbin,et al.  Analysis of protein domain families in Caenorhabditis elegans. , 1997, Genomics.

[88]  G. Ruvkun,et al.  The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans , 1997, Nature.

[89]  E. Jorgensen,et al.  Identification and characterization of the vesicular GABA transporter , 1997, Nature.

[90]  Koutarou D. Kimura,et al.  daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. , 1997, Science.

[91]  I. Greenwald,et al.  Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[92]  W. Campbell,et al.  Effect of ivermectin on Caenorhabditis elegans larvae previously exposed to alcoholic immobilization. , 1996, The Journal of parasitology.

[93]  D. Weinshenker,et al.  Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[94]  Iva Greenwald,et al.  Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease gene , 1995, Nature.

[95]  C. Link,et al.  Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[96]  D. Pollen,et al.  Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease , 1995, Nature.

[97]  Min Han,et al.  Ras farnesyltransferase inhibitors suppress the phenotype resulting from an activated ras mutation in Caenorhabditis elegans. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[98]  H. Horvitz,et al.  Activation of C. elegans cell death protein CED-9 by an ammo-acid substitution in a domain conserved in Bcl-2 , 1994, Nature.

[99]  C M Loer,et al.  Serotonin-deficient mutants and male mating behavior in the nematode Caenorhabditis elegans , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  M. Sundaram,et al.  Suppressors of a lin-12 hypomorph define genes that interact with both lin-12 and glp-1 in Caenorhabditis elegans. , 1993, Genetics.

[101]  R. Hosono,et al.  The unc‐18 Gene Encodes a Novel Protein Affecting the Kinetics of Acetylcholine Metabolism in the Nematode Caenorhabditis elegans , 1992, Journal of neurochemistry.

[102]  R. Hosono,et al.  Additional genes which result in an elevation of acetylcholine levels by mutations in Caenorhabditis elegans , 1991, Neuroscience Letters.

[103]  H. Horvitz,et al.  Caenorhabditis elegans mutants defective in the functioning of the motor neurons responsible for egg laying. , 1989, Genetics.

[104]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[105]  H. Horvitz,et al.  A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons , 1988, Nature.

[106]  C. Kenyon,et al.  The nematode Caenorhabditis elegans. , 1988, Science.

[107]  C. Harley,et al.  Effect of vitamin E on lifespan and reproduction in Caenorhabditis elegans , 1988, Mechanisms of Ageing and Development.

[108]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[109]  J. N. Thomson,et al.  Mutant sensory cilia in the nematode Caenorhabditis elegans. , 1986, Developmental biology.

[110]  M. Klass,et al.  Aging in the nematode Caenorhabditis elegans: Major biological and environmental factors influencing life span , 1977, Mechanisms of Ageing and Development.

[111]  J. A. Parker,et al.  Genetic and pharmacological suppression of polyglutamine-dependent neuronal dysfunction in Caenorhabditis elegans , 2007, Journal of Molecular Neuroscience.

[112]  Andrew K. Jones,et al.  Model organisms: Chemistry-to-gene screens in Caenorhabditis elegans , 2005, Nature Reviews Drug Discovery.

[113]  Kimberly Van Auken,et al.  WormBase: a multi-species resource for nematode biology and genomics , 2004, Nucleic Acids Res..

[114]  L. Scott,et al.  Orlistat , 2012, Drugs.

[115]  Tim Crook,et al.  iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human , 2003, Nature Genetics.

[116]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.

[117]  L. Guarente,et al.  Model organisms as a guide to mammalian aging. , 2002, Developmental cell.

[118]  K. B. McKusick,et al.  High-throughput gene mapping in Caenorhabditis elegans. , 2002, Genome research.

[119]  B. Berger,et al.  ARACHNE: a whole-genome shotgun assembler. , 2002, Genome research.

[120]  Paul W. Sternberg,et al.  WormBase: network access to the genome and biology of Caenorhabditis elegans , 2001, Nucleic Acids Res..

[121]  E. Cuppen,et al.  The G-Protein b-Subunit GPB-2 in Caenorhabditis elegans Regulates the Goa–Gqa Signaling Network Through Interactions With the Regulator of G-Protein Signaling Proteins EGL-10 and EAT-16 , 2001 .

[122]  Jeremy Fairbank,et al.  Historical Perspective , 1984, Language in Society.

[123]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[124]  D. Riddle C. Elegans II , 1998 .