Absence of Ca2+-Induced Mitochondrial Permeability Transition but Presence of Bongkrekate-Sensitive Nucleotide Exchange in C. crangon and P. serratus

Mitochondria from the embryos of brine shrimp (Artemia franciscana) do not undergo Ca2+-induced permeability transition in the presence of a profound Ca2+ uptake capacity. Furthermore, this crustacean is the only organism known to exhibit bongkrekate-insensitive mitochondrial adenine nucleotide exchange, prompting the conjecture that refractoriness to bongkrekate and absence of Ca2+-induced permeability transition are somehow related phenomena. Here we report that mitochondria isolated from two other crustaceans, brown shrimp (Crangon crangon) and common prawn (Palaemon serratus) exhibited bongkrekate-sensitive mitochondrial adenine nucleotide transport, but lacked a Ca2+-induced permeability transition. Ca2+ uptake capacity was robust in the absence of adenine nucleotides in both crustaceans, unaffected by either bongkrekate or cyclosporin A. Transmission electron microscopy images of Ca2+-loaded mitochondria showed needle-like formations of electron-dense material strikingly similar to those observed in mitochondria from the hepatopancreas of blue crab (Callinectes sapidus) and the embryos of Artemia franciscana. Alignment analysis of the partial coding sequences of the adenine nucleotide translocase (ANT) expressed in Crangon crangon and Palaemon serratus versus the complete sequence expressed in Artemia franciscana reappraised the possibility of the 208-214 amino acid region for conferring sensitivity to bongkrekate. However, our findings suggest that the ability to undergo Ca2+-induced mitochondrial permeability transition and the sensitivity of adenine nucleotide translocase to bongkrekate are not necessarily related phenomena.

[1]  C. Baines,et al.  Phosphate is not an absolute requirement for the inhibitory effects of cyclosporin A or cyclophilin D deletion on mitochondrial permeability transition. , 2012, The Biochemical journal.

[2]  C. Chinopoulos,et al.  Modulation of the mitochondrial permeability transition by cyclophilin D: moving closer to F(0)-F(1) ATP synthase? , 2012, Mitochondrion.

[3]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[4]  Tuan Xu,et al.  Histopathological and biochemical alternations of the heart induced by acute cadmium exposure in the freshwater crab Sinopotamon yangtsekiense. , 2011, Chemosphere.

[5]  V. Giorgio,et al.  The mitochondrial permeability transition pore and cyclophilin D in cardioprotection. , 2011, Biochimica et biophysica acta.

[6]  C. Chinopoulos,et al.  Modulation of F0F1‐ATP synthase activity by cyclophilin D regulates matrix adenine nucleotide levels , 2011, The FEBS journal.

[7]  C. Chinopoulos,et al.  A distinct sequence in the adenine nucleotide translocase from Artemia franciscana embryos is associated with insensitivity to bongkrekate and atypical effects of adenine nucleotides on Ca2+ uptake and sequestration , 2011, The FEBS journal.

[8]  C. Chinopoulos,et al.  Complex Contribution of Cyclophilin D to Ca2+-induced Permeability Transition in Brain Mitochondria, with Relation to the Bioenergetic State* , 2010, The Journal of Biological Chemistry.

[9]  C. Chinopoulos,et al.  Mitochondrial Ca2+ sequestration and precipitation revisited , 2010, The FEBS journal.

[10]  P. Bernardi,et al.  The mitochondrial permeability transition from yeast to mammals , 2010, FEBS letters.

[11]  A. Yamada,et al.  Ca2+-induced permeability transition can be observed even in yeast mitochondria under optimized experimental conditions. , 2009, Biochimica et biophysica acta.

[12]  O. Demin,et al.  Modeling of ATP–ADP steady‐state exchange rate mediated by the adenine nucleotide translocase in isolated mitochondria , 2009, The FEBS journal.

[13]  S. Hand,et al.  Metabolic Depression is Delayed and Mitochondrial Impairment Averted during Prolonged Anoxia in the ghost shrimp, Lepidophthalmus louisianensis (Schmitt, 1935). , 2009, Journal of experimental marine biology and ecology.

[14]  C. Chinopoulos,et al.  A re‐evaluation of the role of matrix acidification in uncoupler‐induced Ca2+ release from mitochondria , 2009, The FEBS journal.

[15]  C. Chinopoulos,et al.  A novel kinetic assay of mitochondrial ATP-ADP exchange rate mediated by the ANT. , 2009, Biophysical journal.

[16]  B. Törőcsik,et al.  A R T I C L E I N T R O D U C T I O N , 2022 .

[17]  M. Klingenberg The ADP and ATP transport in mitochondria and its carrier. , 2008, Biochimica et biophysica acta.

[18]  A. Halestrap,et al.  Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. , 2008, Biochimica et biophysica acta.

[19]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[20]  G. Fiskum,et al.  Calcium‐induced precipitate formation in brain mitochondria: composition, calcium capacity, and retention , 2007, Journal of neurochemistry.

[21]  H. Nury,et al.  Relations between structure and function of the mitochondrial ADP/ATP carrier. , 2006, Annual review of biochemistry.

[22]  S. Korsmeyer,et al.  Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  S. Hand,et al.  Mitochondrial permeability transition in the crustacean Artemia franciscana: absence of a calcium-regulated pore in the face of profound calcium storage. , 2005, American journal of physiology. Regulatory, integrative and comparative physiology.

[24]  P. Bernardi,et al.  Genetic Dissection of the Permeability Transition Pore , 2005, Journal of bioenergetics and biomembranes.

[25]  P. Bernardi,et al.  Properties of the Permeability Transition Pore in Mitochondria Devoid of Cyclophilin D* , 2005, Journal of Biological Chemistry.

[26]  Jeffrey Robbins,et al.  Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death , 2005, Nature.

[27]  Tetsuya Watanabe,et al.  Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death , 2005, Nature.

[28]  Dean P. Jones,et al.  The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore , 2004, Nature.

[29]  A. Bubel Histological and electron microscopical observations on the effects of different salinities and heavy metal Ions, on the gills of Jaera nordmanni (Rathke) (Crustacea, Isopoda) , 1976, Cell and Tissue Research.

[30]  Eva Pebay-Peyroula,et al.  Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside , 2003, Nature.

[31]  G. Fiskum,et al.  Cyclosporin A-insensitive Permeability Transition in Brain Mitochondria , 2003, Journal of Biological Chemistry.

[32]  E. Belyaeva,et al.  Cyclosporin A-sensitive permeability transition pore is involved in Cd(2+)-induced dysfunction of isolated rat liver mitochondria: doubts no more. , 2002, Archives of biochemistry and biophysics.

[33]  M. Crompton,et al.  The mitochondrial permeability transition pore. , 1999, Biochemical Society symposium.

[34]  Patrice Gouet,et al.  ESPript: analysis of multiple sequence alignments in PostScript , 1999, Bioinform..

[35]  L. Smith,et al.  On the relationship between the mitochondrial inner membrane anion channel and the adenine nucleotide translocase. , 1994, The Journal of biological chemistry.

[36]  J. Duszyński,et al.  Continuous recording of intramitochondrial pH with fluorescent pH indicators: novel probes and limitations of the method. , 1993, Acta biochimica Polonica.

[37]  P. K. Smith,et al.  Measurement of protein using bicinchoninic acid. , 1985, Analytical biochemistry.

[38]  B. Komm,et al.  Respiratory and calcium transport properties of spiny lobster hepatopancreas mitochondria. , 1983, Archives of biochemistry and biophysics.

[39]  R. Haworth,et al.  The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. , 1979, Archives of biochemistry and biophysics.

[40]  R. Haworth,et al.  The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. , 1979, Archives of biochemistry and biophysics.

[41]  R. Haworth,et al.  The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. , 1979, Archives of biochemistry and biophysics.

[42]  M. Wikström,et al.  Safranine as a probe of the mitochondrial membrane potential , 1976, FEBS letters.

[43]  A. Lehninger,et al.  CALCIUM PHOSPHATE GRANULES IN THE HEPATOPANCREAS OF THE BLUE CRAB CALLINECTES SAPIDUS , 1974, The Journal of cell biology.

[44]  A. Lehninger,et al.  BIOCHEMICAL AND ULTRASTRUCTURAL ASPECTS OF CA2+ TRANSPORT BY MITOCHONDRIA OF THE HEPATOPANCREAS OF THE BLUE CRAB CALLINECTES SAPIDUS , 1974, The Journal of cell biology.

[45]  A. Lehninger,et al.  A survey of the interaction of calcium ions with mitochondria from different tissues and species. , 1971, The Biochemical journal.

[46]  T. Out,et al.  The effect of adenine nucleotides and pH on the inhibition of oxidative phosphorylation by bongkrekic acid. , 1970, Biochimica et biophysica acta.

[47]  D. Tyler,et al.  [11] The preparation of heart mitochondria from laboratory animals , 1967 .

[48]  K. A. Munday,et al.  The preparation and properties of sub-cellular respiring particles (mitochonria) from the hepatopancreas of Carcinus maenas. , 1962, Comparative biochemistry and physiology.