Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons

Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems.

[1]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[2]  W. Alt,et al.  Robustness of topologically protected edge states in quantum walk experiments with neutral atoms , 2016, 1605.03633.

[3]  Zak,et al.  Berry's phase for energy bands in solids. , 1989, Physical review letters.

[4]  Robert R. Thomson,et al.  Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice , 2016, Nature Communications.

[5]  Michael Levin,et al.  Anomalous edge states and the bulk-edge correspondence for periodically-driven two dimensional systems , 2012, 1212.3324.

[6]  P. Zoller,et al.  Topological quantum matter with ultracold gases in optical lattices , 2016, Nature Physics.

[7]  Salvador Elías Venegas-Andraca,et al.  Quantum walks: a comprehensive review , 2012, Quantum Information Processing.

[8]  M. Rudner,et al.  Topological transition in a non-Hermitian quantum walk. , 2008, Physical review letters.

[9]  J. Asbóth,et al.  Chiral symmetry and bulk{boundary correspondence in periodically driven one-dimensional systems , 2014, 1405.1709.

[10]  Gil Refael,et al.  Floquet topological insulator in semiconductor quantum wells , 2010, 1008.1792.

[11]  Enrico Santamato,et al.  Statistical moments of quantum-walk dynamics reveal topological quantum transitions , 2016, Nature Communications.

[12]  A. Fert Nobel Lecture: Origin, development, and future of spintronics , 2008 .

[13]  Z. Q. Zhang,et al.  Geometric phase and band inversion in periodic acoustic systems , 2015, Nature Physics.

[14]  Stefan Nolte,et al.  Observation of photonic anomalous Floquet topological insulators , 2017, Nature communications.

[15]  B. Halperin Quantized Hall conductance, current carrying edge states, and the existence of extended states in a two-dimensional disordered potential , 1982 .

[16]  anonymous,et al.  Comprehensive review , 2019 .

[17]  M. Rudner,et al.  Topological singularities and the general classification of Floquet–Bloch systems , 2015, 1506.07647.

[18]  Klaus von Klitzing,et al.  Quantized hall effect , 1983 .

[19]  Roderich Moessner,et al.  Floquet topological insulators , 2012, 1211.5623.

[20]  Hideo Aoki,et al.  Photovoltaic Hall effect in graphene , 2008, 0807.4767.

[21]  Ebrahim Karimi,et al.  Quantum walks and wavepacket dynamics on a lattice with twisted photons , 2014, Science Advances.

[22]  Revealing the topology of Hofstadter bands with ultracold bosonic atoms , 2014 .

[23]  Stefan Nolte,et al.  Observation of a Topological Transition in the Bulk of a Non-Hermitian System. , 2015, Physical review letters.

[24]  I. B. Spielman,et al.  Visualizing edge states with an atomic Bose gas in the quantum Hall regime , 2015, Science.

[25]  B. Gadway,et al.  Observation of the topological soliton state in the Su–Schrieffer–Heeger model , 2016, Nature Communications.

[26]  P. Zoller,et al.  Observation of chiral edge states with neutral fermions in synthetic Hall ribbons , 2015, Science.

[27]  N. R. Cooper,et al.  Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms , 2014, Nature Physics.

[28]  Shinsei Ryu,et al.  Classification of topological quantum matter with symmetries , 2015, 1505.03535.

[29]  C. Beenakker,et al.  A road to reality with topological superconductors , 2016, Nature Physics.

[30]  N. Goldman,et al.  Periodically Driven Quantum Systems: Effective Hamiltonians and Engineered Gauge Fields , 2014, 1404.4373.

[31]  Enrico Santamato,et al.  Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate , 2010, 1010.4473.

[32]  Takuya Kitagawa,et al.  Exploring topological phases with quantum walks , 2010, 1003.1729.

[33]  J. Kosterlitz,et al.  Kosterlitz–Thouless physics: a review of key issues , 2016, Reports on progress in physics. Physical Society.

[34]  Achim Rosch,et al.  Real-space imaging of a topologically protected edge state with ultracold atoms in an amplitude-chirped optical lattice , 2016, Nature Communications.

[35]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[36]  Jiannis K. Pachos,et al.  Introduction to Topological Quantum Computation , 2012 .

[37]  Hideaki Obuse,et al.  Bulk-boundary correspondence for chiral symmetric quantum walks , 2013, 1303.1199.

[38]  A. Fert The origin, development and future of spintronics , 2008 .

[39]  Andrew G. White,et al.  Observation of topologically protected bound states in photonic quantum walks , 2011, Nature Communications.

[40]  F. Marquardt,et al.  Topological Phases of Sound and Light , 2014, 1409.5375.

[41]  Luis E. F. Foa Torres,et al.  Floquet topological transitions in a driven one-dimensional topological insulator , 2015, 1506.03067.

[42]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[43]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[44]  Xue-Feng Zhu,et al.  Experimental demonstration of anomalous Floquet topological insulator for sound , 2016, Nature Communications.

[45]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[46]  M. Hafezi,et al.  Imaging topological edge states in silicon photonics , 2013, Nature Photonics.

[47]  Immanuel Bloch,et al.  Direct measurement of the Zak phase in topological Bloch bands , 2012, Nature Physics.

[48]  J. Asbóth,et al.  Symmetries, topological phases, and bound states in the one-dimensional quantum walk , 2012, 1208.2143.

[49]  Andrea Alù,et al.  Floquet topological insulators for sound , 2015, Nature Communications.

[50]  Marin Soljacic,et al.  Topological states in photonic systems , 2016, Nature Physics.

[51]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[52]  M. Segev,et al.  Photonic Floquet topological insulators , 2012, Nature.

[53]  Robert B. Laughlin,et al.  Quantized Hall conductivity in two-dimensions , 1981 .

[54]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[55]  Andrew G. White,et al.  Observation of topologically protected bound states in photonic quantum walks , 2011 .