Stature estimation and calibration: Bayesian and maximum likelihood perspectives in physical anthropology.

Many applied problems in physical anthropology involve estimation of an unobservable quantity (such as age at death or stature) from quantities that are observable. Two of the more disparate subdisciplines of our discipline, paleoanthropology and forensic anthropology, routinely make use of various estimation methods on a case-by-case basis. We discuss the rationales for making estimations on isolated cases, taking stature estimation from femoral and humerus lengths as an example. We show that the entirety of our discussion can be placed within the context of calibration problems, where a large calibration sample is used to estimate an unobservable quantity for a single skeleton. Taking a calibration approach to the problem highlights the essentially Bayesian versus maximum likelihood nature of the question of stature estimation. On the basis of both theoretical arguments and practical examples, we show that inverse calibration (regression of stature on bone length) is generally preferred when the stature distribution for a reference sample forms a reasonable prior, while classical calibration (regression of bone length on stature followed by solving for stature) is preferred when there is reason to suspect that the estimated stature will be an extrapolation beyond the useful limits of the reference sample statures. The choice between these two approaches amounts to the decision to use either a Bayesian or a maximum likelihood method.

[1]  David S. Moore,et al.  Bayes for Beginners? Some Reasons to Hesitate , 1997 .

[2]  Christopher B. Ruff,et al.  Morphological adaptation to climate in modern and fossil hominids , 1994 .

[3]  J. Boldsen A statistical evaluation of the basis for predicting stature from lengths of long bones in European populations. , 1984, American journal of physical anthropology.

[4]  P. Sprent Models in regression and related topics , 1971 .

[5]  F. Chayes On Ratio Correlation in Petrography , 1949, The Journal of Geology.

[6]  L. Aiello Allometry and the analysis of size and shape in human evolution , 1992 .

[7]  Clifford H. Spiegelman,et al.  [A Bayesian Analysis of the Linear Calibration Problem]: Discussion , 1981 .

[8]  L. Konigsberg An historical note on the t-test for differences in sexual dimorphism between populations. , 1991, American journal of physical anthropology.

[9]  Christine Osborne,et al.  Statistical Calibration: A Review , 1991 .

[10]  Richard J. Smith Regression models for prediction equations , 1994 .

[11]  J. Neter,et al.  Applied linear statistical models : regression, analysis of variance, and experimental designs , 1974 .

[12]  Jerome Sacks,et al.  A quick and easy multiple-use calibration-curve procedure , 1988 .

[13]  A. Barbour,et al.  Aspects of line-fitting in bivariate allometric analyses. , 1989, Folia primatologica; international journal of primatology.

[14]  P. Jolicoeur INTERVAL ESTIMATION OF THE SLOPE OF THE MAJOR AXIS OF A BIVARIATE NORMAL DISTRIBUTION IN THE CASE OF A SMALL SAMPLE , 1968 .

[15]  Christian P. Robert,et al.  Is Pitman Closeness a Reasonable Criterion , 1993 .

[16]  Caitlin E. Buck,et al.  THE BAYESIAN APPROACH TO THE INTERPRETATION OF ARCHAEOLOGICAL DATA , 1995 .

[17]  T Solheim,et al.  Technical note: regression analysis in adult age estimation. , 1997, American journal of physical anthropology.

[18]  G. Gleser,et al.  Estimation of stature from long bones of American Whites and Negroes. , 1952, American journal of physical anthropology.

[19]  G. K. Shukla On the Problem of Calibration , 1972 .

[20]  A Simplified Approach to Calibration Confidence Sets , 1993 .

[21]  A. Townsend Peterson,et al.  The Fallacy of Averages , 1988, The American Naturalist.

[22]  W. Gilks,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 1992 .

[23]  W. Jungers,et al.  Estimation of African ape body length from femur length. , 1998, Journal of human evolution.

[24]  R. G. Krutchkoff,et al.  Classical and Inverse Regression Methods of Calibration , 1967 .

[25]  F. Graybill An introduction to linear statistical models , 1961 .

[26]  W. Jungers,et al.  Shape, relative size, and size‐adjustments in morphometrics , 1995 .

[27]  Karl Pearson,et al.  Mathematical Contributions to the Theory of Evolution. V. On the Reconstruction of the Stature of Prehistoric Races , 1899 .

[28]  W. Jungers Lucy's length: stature reconstruction in Australopithecus afarensis (A.L.288-1) with implications for other small-bodied hominids. , 1988, American journal of physical anthropology.

[29]  T. Mathew,et al.  An Exact Confidence Region in Multivariate Calibration , 1994 .

[30]  H. Scheffé A Statistical Theory of Calibration , 1973 .

[31]  T. Sjøvold Estimation of stature from long bones utilizing the line of organic correlation , 1990 .

[32]  J. K. Lundy,et al.  Femur/stature ratio and estimates of stature in mid- and late-Pleistocene fossil hominids. , 1990, American journal of physical anthropology.

[33]  J. Maritz,et al.  An Analysis of the Linear-Calibration Controversy From the Perspective of Compound Estimation , 1982 .

[34]  M. Srivastava Comparison of the inverse and classical estimators in multi-univariate linear calibration , 1995 .

[35]  B. Hoadley A Bayesian Look at Inverse Linear Regression , 1970 .

[36]  J. Lee A note on the conditional approach to interval estimation in the calibration problem. , 1991, Biometrics.

[37]  Christopher B. Ruff,et al.  Body Size and Body Shape , 1993 .

[38]  E. J. Williams A Note on Regression Methods in Calibration , 1969 .

[39]  R. L. Fountain,et al.  "Race" specificity and the femur/stature ratio. , 1996, American journal of physical anthropology.

[40]  E. Giles,et al.  Stature- and age-related bias in self-reported stature. , 1991, Journal of forensic sciences.

[41]  P Willey,et al.  Inaccuracy of height information on driver's licenses. , 1991, Journal of forensic sciences.

[42]  L. Konigsberg,et al.  Statistical study of sexual dimorphism in the human fetal sciatic notch. , 1995, American journal of physical anthropology.

[43]  G. Casella,et al.  Is Pitman Closeness a Reasonable Criterion?: Comment , 1993 .

[44]  A. F. Bissell Lines through the origin—is NO INT the answer? , 1992 .

[45]  N. Rogers A Study of Histological Aging of the Human Clavicle , 1996 .

[46]  On the Choice of Regression in Linear Calibration. Comments on a paper by R. G. Krutchkoff , 1970 .

[47]  W. R. Buckland,et al.  Statistical Theory and Methodology in Science and Engineering. , 1960 .

[48]  V. Clark,et al.  Computer-aided multivariate analysis , 1991 .

[49]  William G. Hunter,et al.  A Bayesian Analysis of the Linear Calibration Problem , 1981 .

[50]  A. Merwe,et al.  A Bayesian approach to multivariate and conditional calibration , 1995 .

[51]  E. Giles,et al.  Confidence intervals for estimates based on linear regression in forensic anthropology. , 1988, Journal of forensic sciences.

[52]  C. Eisenhart,et al.  The Interpretation of Certain Regression Methods and Their Use in Biological and Industrial Research , 1939 .

[53]  L. Gleser Measurement, Regression, and Calibration , 1996 .

[54]  Max Halperin,et al.  On Inverse Estimation in Linear Regression , 1970 .

[55]  P. Jolicoeur Bivariate allometry: Interval estimation of the slopes of the ordinary and standardized normal major axes and structural relationship , 1990 .

[56]  B. Sæther,et al.  On rethinking allometry: which regression model to use? , 1983 .

[57]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[58]  R. Jantz,et al.  Allometric secular change in the long bones from the 1800s to the present. , 1995, Journal of forensic sciences.

[59]  C. Ruff,et al.  Ecogeographical patterning and stature prediction in fossil hominids: component on M.R. Feldesman and R.L. Fountain, American Journal of Physical Anthropology (1996) 100:207-224. , 1997, American journal of physical anthropology.

[60]  Giles H. Brown An Optimization Criterion for Linear Inverse Estimation , 1979 .

[61]  W. Ricker Linear Regressions in Fishery Research , 1973 .

[62]  Jim Albert,et al.  Teaching Bayes' Rule: A Data-Oriented Approach , 1997 .

[63]  H. Bolfarine,et al.  Linear calibration in functional regression models , 1997 .

[64]  A. M. Pollard,et al.  A Bayesian approach to adult human age estimation from dental observations by Johanson's age changes. , 1996, Journal of forensic sciences.

[65]  T. Geissmann Estimation of australopithecine stature from long bones: A.L.288-1 as a test case. , 1986, Folia primatologica; international journal of primatology.

[66]  C. A. J. Lieftnck-Koeijers Multivariate calibration: a generalization of the classical estimator , 1988 .

[67]  B. McArdle The structural relationship: regression in biology , 1988 .

[68]  Joseph Berkson,et al.  Estimation of a Linear Function for a Calibration Line; Consideration of a Recent Proposal , 1969 .

[69]  J. K. Lundy,et al.  Stature estimates for some African Plio-Pleistocene fossil hominids , 1988 .

[70]  T. M. Cole Comparative craniometry of the Atelinae (Platyrrhini, Primates) : function, development, and evolution , 1996 .

[71]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[72]  W. Jungers Lucy's limbs: skeletal allometry and locomotion in Australopithecus afarensis , 1982, Nature.

[73]  Donald A. Berry Teaching Elementary Bayesian Statistics with Real Applications in Science , 1997 .

[74]  J. T. Hwang Universal Domination and Stochastic Domination: Estimation Simultaneously Under a Broad Class of Loss Functions , 1985 .

[75]  J. Mosimann Size Allometry: Size and Shape Variables with Characterizations of the Lognormal and Generalized Gamma Distributions , 1970 .