Geochronology and Geochemistry of Early Cretaceous A‐type Granites in Central‐eastern Inner Mongolia, China: Implications for Late Mesozoic Tectonic Evolution of the Southern Great Xing'an Range

[1]  F. Yuan,et al.  Petrogenesis of Early Cretaceous granitic rocks from the Haobugao area, southern Great Xing’an Range, northeast China: Geochronology, geochemistry and Sr-Nd-Hf-O isotope constraints , 2021, Lithos.

[2]  Jun Cao,et al.  Petrogenesis and tectonic setting of the Early Permian gabbro–granite complex in the southeastern Central Asian Orogenic Belt, central Inner Mongolia, China , 2021, Journal of Asian Earth Sciences: X.

[3]  Tiegang Li,et al.  Mineralization of the Daolundaba Cu–Sn–W–Ag deposit in the southern Great Xing'an Range, China: Constraints from geochronology, geochemistry, and Hf isotope , 2021, Ore Geology Reviews.

[4]  Zhaochu Hu,et al.  Estimation of Isotopic Reference Values for Pure Materials and Geological Reference Materials , 2020 .

[5]  Li Zhang,et al.  Late Mesozoic tectonic evolution of the southern Great Xing'an Range, NE China: Evidence from whole-rock geochemistry, and zircon U Pb ages and Hf isotopes from volcanic rocks , 2020 .

[6]  Wei Wei,et al.  Petrogenesis of early Cretaceous granitoids in the southern Great Xing’an Range, NE China: Constraints from the Haliheiba pluton , 2020 .

[7]  Kui-Feng Mi,et al.  Zircon geochronological and geochemical study of the Baogaigou Tin deposits, southern Great Xing'an Range, Northeast China: Implications for the timing of mineralization and ore genesis , 2019, Geological Journal.

[8]  L. Bagas,et al.  Element behaviour during interaction of magma and fluid: A case study of Chamuhan Granite, and implications on the genesis of W – Mo mineralisation , 2019, Lithos.

[9]  Shou‐ting Zhang,et al.  Genesis of the Bianjiadayuan Pb–Zn polymetallic deposit, Inner Mongolia, China: Constraints from in-situ sulfur isotope and trace element geochemistry of pyrite , 2019, Geoscience Frontiers.

[10]  R. Walker,et al.  Destruction of the North China Craton in the Mesozoic , 2019, Annual Review of Earth and Planetary Sciences.

[11]  Changzhou Deng,et al.  Early Cretaceous volcanic rocks in the Great Xing’an Range: Late effect of a flat-slab subduction , 2019, Journal of Geodynamics.

[12]  Huayong Chen,et al.  Late-stage southwards subduction of the Mongol-Okhotsk oceanic slab and implications for porphyry Cu Mo mineralization: Constraints from igneous rocks associated with the Fukeshan deposit, NE China , 2019, Lithos.

[13]  W. Wu,et al.  Temporal changes in the subduction of the Paleo-Pacific plate beneath Eurasia during the late Mesozoic: Geochronological and geochemical evidence from Cretaceous volcanic rocks in eastern NE China , 2019, Lithos.

[14]  Xiaohui Zhang,et al.  Early Cretaceous gabbro–granite complex from central Inner Mongolia: Insights into initial rifting and crust–mantle interaction in the northern China–Mongolia basin–range tract , 2019, Lithos.

[15]  S. Wilde,et al.  Continental Arc and Back‐Arc Migration in Eastern NE China: New Constraints on Cretaceous Paleo‐Pacific Subduction and Rollback , 2018, Tectonics.

[16]  J. Richards A Shake-Up in the Porphyry World? , 2018, Economic Geology.

[17]  Wencan Liu,et al.  Geochronology and geochemistry of the Late Jurassic bimodal volcanic rocks from Hailisen area, central‐southern Great Xing'an Range, Northeast China , 2018 .

[18]  R. Romer,et al.  Tin in granitic melts: The role of melting temperature and protolith composition , 2018, Lithos.

[19]  Zhi-hui Wang,et al.  Late Jurassic rhyolites from the Wuchagou region in the central Great Xing’an Range, NE China: Petrogenesis and tectonic implications , 2018, Journal of Asian Earth Sciences.

[20]  Rongqing Zhang,et al.  Late Cretaceous granitic magmatism and mineralization in the Yingwuling W–Sn deposit, South China: Constraints from zircon and cassiterite U–Pb geochronology and whole-rock geochemistry , 2018 .

[21]  Jie Tang,et al.  Subduction history of the Paleo-Pacific slab beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast Asia , 2018, Science China Earth Sciences.

[22]  Wei Wei,et al.  Origin of the Haobugao skarn Fe-Zn polymetallic deposit, Southern Great xing’an range, NE China: Geochronological, geochemical, and Sr-Nd-Pb isotopic constraints , 2018 .

[23]  Yongtai Yang,et al.  Tectonostratigraphic evolution of the Mohe-Upper Amur Basin reflects the final closure of the Mongol-Okhotsk Ocean in the latest Jurassic–earliest Cretaceous , 2017 .

[24]  L. Bagas,et al.  Two mineralization events in the Baiyinnuoer Zn-Pb deposit in Inner Mongolia, China: Evidence from field observations, S-Pb isotopic compositions and U-Pb zircon ages , 2017 .

[25]  F. Neubauer,et al.  A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt , 2017 .

[26]  Fu-guan Wu,et al.  Highly fractionated granites: Recognition and research , 2017, Science China Earth Sciences.

[27]  L. Bagas,et al.  Geological, geochemical, and geochronological characteristics of Weilasituo Sn-polymetal deposit, Inner Mongolia, China , 2017 .

[28]  Q. Shan,et al.  Geochronology, geochemistry and geodynamic implications of the Late Mesozoic volcanic rocks in the southern Great Xing’an Mountains, NE China , 2015 .

[29]  S. Wilde Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction — A review of the evidence , 2015 .

[30]  Xiang-bo Li,et al.  A short-lived but significant Mongol–Okhotsk collisional orogeny in latest Jurassic–earliest Cretaceous , 2015 .

[31]  P. Eizenhöfer,et al.  Geochronological and Hf isotopic variability of detrital zircons in Paleozoic strata across the accretionary collision zone between the North China craton and Mongolian arcs and tectonic implications , 2015 .

[32]  Xiaohui Zhang,et al.  Early Permian A-type granites from central Inner Mongolia, North China: Magmatic tracer of post-collisional tectonics and oceanic crustal recycling , 2015 .

[33]  Zhenhua Zhou,et al.  Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing'an Range, northeastern China , 2015 .

[34]  Xu Wenliang,et al.  Geochronology and geochemistry of muscovite granite in Sunwu area, NE China: Implications for the timing of closure of the Mongol-Okhotsk Ocean , 2015 .

[35]  Kai‐Jun Zhang Genesis of the Late Mesozoic Great Xing’an Range Large Igneous Province in eastern central Asia: A Mongol–Okhotsk slab window model , 2014 .

[36]  K. Yong Study of rock_forming and ore_forming ages of Badaguan prophypy Cu_Mo deposit in Inner Mongolia , 2014 .

[37]  Wei-dong Sun,et al.  Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: implications for Zr–REE–Nb mineralization , 2014, Mineralium Deposita.

[38]  X. Wen Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations. , 2013 .

[39]  Shan Gao,et al.  Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS , 2012 .

[40]  Wang Yu LA-ICP-MS zircon U-Pb dating of dykes of Dajing tin-polymetallic deposit,Inner Mongolia,China,and its geological significance , 2012 .

[41]  Su-Ning Li Petrogenetic and metallogentic ages and tectonic setting of the Huanggangliang Fe-Sn deposit,Inner Mongolia , 2012 .

[42]  Xian‐Hua Li,et al.  Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China , 2011 .

[43]  Fei Wang,et al.  Geochronological framework of Mesozoic volcanic rocks in the Great Xing’an Range, NE China, and their geodynamic implications , 2010 .

[44]  S. Wilde,et al.  Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China: Implications for subduction-induced delamination , 2010 .

[45]  P. Shen,et al.  Baogutu Porphyry Cu-Mo-Au Deposit, West Junggar, Northwest China: Petrology, Alteration, and Mineralization , 2010 .

[46]  Chen Zhi Geochronology and geochemistry of the Taipingchuan copper-molybdenum deposit in Inner Mongolia,and its geological significances , 2010 .

[47]  Shan Gao,et al.  Continental and Oceanic Crust Recycling-induced Melt^Peridotite Interactions in the Trans-North China Orogen: U^Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths , 2010 .

[48]  F. Pirajno,et al.  Intraplate magmatism in Central Asia and China and associated metallogeny , 2009 .

[49]  R. Dall’Agnol,et al.  Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites , 2007 .

[50]  Liu Yong,et al.  Igneous Petrotectonic Assemblages and Tectonic Settings: A Discussion , 2007 .

[51]  S. Wilde,et al.  Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China , 2006 .

[52]  M. Whitehouse,et al.  Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia , 2005 .

[53]  C. Braithwaite,et al.  Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic , 2004 .

[54]  Yong‐Fei Zheng,et al.  Genesis of zircon and its constraints on interpretation of U-Pb age , 2004 .

[55]  B. Windley,et al.  Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt , 2003 .

[56]  M. Stein,et al.  The Petrogenesis of A-type Magmas from the Amram Massif, Southern Israel , 2003 .

[57]  F. Guo,et al.  Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China , 2003 .

[58]  S. Wilde,et al.  A-type granites in northeastern China: age and geochemical constraints on their petrogenesis , 2002 .

[59]  W. Harbert,et al.  Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia , 2002 .

[60]  Yu Wang,et al.  Tin–polymetallic Mineralization in the Southern Part of the Da Hinggan Mountains, China , 2001 .

[61]  Calvin G. Barnes,et al.  A Geochemical Classification for Granitic Rocks , 2001 .

[62]  W. Spakman,et al.  Mesozoic subducted slabs under Siberia , 1999, Nature.

[63]  A. P. Douce,et al.  Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids , 1997 .

[64]  E. Middlemost Naming materials in the magma/igneous rock system , 1994 .

[65]  G. Eby Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications , 1992 .

[66]  P. Piccoli,et al.  Tectonic discrimination of granitoids , 1989 .

[67]  P. Rickwood Boundary lines within petrologic diagrams which use oxides of major and minor elements , 1989 .

[68]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[69]  J. Whalen,et al.  A-type granites: geochemical characteristics, discrimination and petrogenesis , 1987 .

[70]  A. Tindle,et al.  Geochemical characteristics of collision-zone magmatism , 1986, Geological Society, London, Special Publications.

[71]  R. Batchelor,et al.  Petrogenetic interpretation of granitoid rock series using multicationic parameters , 1985 .

[72]  A. Tindle,et al.  Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks , 1984 .

[73]  T. M. Harrison,et al.  Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types , 1983 .

[74]  G. Hanson The application of trace elements to the petrogenesis of igneous rocks of granitic composition , 1978 .