Kinetic Modeling of ICAR ATRP

Kinetic modeling is used to better understand and optimize initiators for continuous activator regeneration atom-transfer radical polymerization (ICAR ATRP). The polymerization conditions are adjusted as a function of the ATRP catalyst reactivity for two monomers, methyl methacrylate and styrene. In order to prepare a well-controlled ICAR ATRP process with a low catalyst amount (ppm level), a sufficiently low initial concentration of conventional radical initiator relative to the initial ATRP initiator is required. In some cases, stepwise addition of a conventional radical initiator is needed to reach high conversion. Under such conditions, the equilibrium of the activation/deactivation process for macromolecular species can be established already at low conversion.

[1]  Dagmar R. D’hooge,et al.  Kinetic Modeling as a Tool to Understand and Improve the Nitroxide Mediated Polymerization of Styrene , 2011 .

[2]  K. Matyjaszewski,et al.  How Fast Can a CRP Be Conducted with Preserved Chain End Functionality , 2011 .

[3]  Dagmar R. D’hooge,et al.  Atom Transfer Radical Polymerization of Isobornyl Acrylate: A Kinetic Modeling Study , 2010 .

[4]  Krzysztof Matyjaszewski,et al.  Transition metal catalysts for controlled radical polymerization , 2010 .

[5]  D. Gigmes,et al.  A Step Towards High-Molecular-Weight Living/Controlled Polystyrene Using SG1-Mediated Polymerization , 2010 .

[6]  Shiping Zhu,et al.  Hybrid atom transfer radical polymerization system for balanced polymerization rate and polymer molecular weight control , 2010 .

[7]  T. Pintauer,et al.  Kinetic studies of the initiation step in copper catalyzed atom transfer radical addition (ATRA) in the presence of free radical diazo initiators as reducing agents. , 2010, Inorganic chemistry.

[8]  A. Goto,et al.  Kinetic Simulations of Reversible Chain Transfer Catalyzed Polymerization (RTCP): Guidelines to Optimum Molecular Weight Control , 2010 .

[9]  Gregory T. Russell,et al.  Chain-length-dependent termination in radical polymerization: Subtle revolution in tackling a long-standing challenge , 2009 .

[10]  K. Matyjaszewski,et al.  Temperature Effect on Activation Rate Constants in ATRP: New Mechanistic Insights into the Activation Process , 2009 .

[11]  K. Matyjaszewski,et al.  Thermodynamic Components of the Atom Transfer Radical Polymerization Equilibrium: Quantifying Solvent Effects , 2009 .

[12]  Krzysztof Matyjaszewski,et al.  Nanostructured functional materials prepared by atom transfer radical polymerization , 2009, Nature Chemistry.

[13]  Dagmar R. D’hooge,et al.  Methodology for Kinetic Modeling of Atom Transfer Radical Polymerization , 2009 .

[14]  K. Matyjaszewski,et al.  Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: From stars to gels , 2009 .

[15]  Dagmar R. D’hooge,et al.  Importance of Radical Transfer in Precipitation Polymerization: The Case of Vinyl Chloride Suspension Polymerization , 2009 .

[16]  K. Matyjaszewski,et al.  Kinetic Modeling of Normal ATRP, Normal ATRP with [CuII]0, Reverse ATRP and SR&NI ATRP , 2008 .

[17]  K. Matyjaszewski,et al.  Ab initio evaluation of the thermodynamic and electrochemical properties of alkyl halides and radicals and their mechanistic implications for atom transfer radical polymerization. , 2008, Journal of the American Chemical Society.

[18]  Krzysztof Matyjaszewski,et al.  Cylindrical molecular brushes: Synthesis, characterization, and properties , 2008 .

[19]  K. Matyjaszewski,et al.  Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes. , 2008, Chemical Society reviews.

[20]  M. Monteiro,et al.  Bimolecular radical termination: New perspectives and insights , 2008 .

[21]  K. Matyjaszewski,et al.  The development of microgels/nanogels for drug delivery applications , 2008 .

[22]  K. Matyjaszewski,et al.  Successful Chain Extension of Polyacrylate and Polystyrene Macroinitiators with Methacrylates in an ARGET and ICAR ATRP , 2007 .

[23]  K. Matyjaszewski,et al.  "Green" atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. , 2007, Chemical reviews.

[24]  Shiping Zhu,et al.  Catalyst Solubility and Experimental Determination of Equilibrium Constants for Heterogeneous Atom Transfer Radical Polymerization , 2007 .

[25]  C. Barner‐Kowollik,et al.  Chain Length Dependent Termination Rate Coefficients of Methyl Methacrylate (MMA) in the Gel Regime: Accessing kti,i Using Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization , 2007 .

[26]  Krzysztof Matyjaszewski,et al.  Grafting from surfaces for "everyone": ARGET ATRP in the presence of air. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[27]  K. Matyjaszewski,et al.  Competitive Equilibria in Atom Transfer Radical Polymerization , 2007 .

[28]  K. Matyjaszewski,et al.  Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents , 2006, Proceedings of the National Academy of Sciences.

[29]  K. Matyjaszewski,et al.  Activators regenerated by electron transfer for atom-transfer radical polymerization of (meth)acrylates and related block copolymers. , 2006, Angewandte Chemie.

[30]  K. Matyjaszewski,et al.  Nuclear magnetic resonance monitoring of chain‐end functionality in the atom transfer radical polymerization of styrene , 2005 .

[31]  Shiping Zhu,et al.  Heterogeneous Atom Transfer Radical Polymerization of Methyl Methacrylate at Low Metal Salt Concentrations , 2005 .

[32]  K. Matyjaszewski,et al.  Effect of Penultimate Unit on the Activation Process in ATRP , 2003 .

[33]  K. Matyjaszewski Factors Affecting Rates of Comonomer Consumption in Copolymerization Processes with Intermittent Activation , 2002 .

[34]  M. Sawamoto,et al.  Metal-catalyzed living radical polymerization. , 2001, Chemical reviews.

[35]  K. Matyjaszewski,et al.  Simultaneous Reverse and Normal Initiation in Atom Transfer Radical Polymerization , 2001 .

[36]  Michael J. Ziegler,et al.  Atom Transfer Radical Copolymerization of Methyl Methacrylate and n-Butyl Acrylate , 2001 .

[37]  K. Matyjaszewski,et al.  Kinetic Analysis of Controlled/“Living” Radical Polymerizations by Simulations. 1. The Importance of Diffusion-Controlled Reactions , 1999 .

[38]  K. Matyjaszewski,et al.  Atom Transfer Radical Copolymerization of Styrene and n-Butyl Acrylate , 1999 .

[39]  J. S. Vrentas,et al.  Predictive methods for self-diffusion and mutual diffusion coefficients in polymer–solvent systems , 1998 .

[40]  K. Matyjaszewski,et al.  Controlled Living Radical Polymerization - Halogen Atom-Transfer Radical Polymerization Promoted by a Cu(I)Cu(II) Redox Process , 1995 .

[41]  Krzysztof Matyjaszewski,et al.  Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes , 1995 .

[42]  Robert G. Gilbert,et al.  Consistent values of rate parameters in free radical polymerization systems (Technical Report) , 1992 .

[43]  K. Matyjaszewski,et al.  Stimuli-responsive molecular brushes , 2010 .

[44]  Krzysztof Matyjaszewski,et al.  Controlled/living radical polymerization: Features, developments, and perspectives , 2007 .

[45]  K. Matyjaszewski,et al.  Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Styrene , 2006 .

[46]  W. Waters The chemistry of free radicals , 1948 .