Margin-Sparsity Trade-Off for the Set Covering Machine
暂无分享,去创建一个
[1] Bernhard Schölkopf,et al. Learning Theory and Kernel Machines , 2003, Lecture Notes in Computer Science.
[2] Manfred K. Warmuth,et al. Relating Data Compression and Learnability , 2003 .
[3] John Shawe-Taylor,et al. Generalisation Error Bounds for Sparse Linear Classifiers , 2000, COLT.
[4] Bernhard Schölkopf,et al. A Compression Approach to Support Vector Model Selection , 2004, J. Mach. Learn. Res..
[5] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[6] John Langford,et al. PAC-MDL Bounds , 2003, COLT.
[7] Bernhard E. Boser,et al. A training algorithm for optimal margin classifiers , 1992, COLT '92.
[8] John Shawe-Taylor,et al. The Set Covering Machine , 2003, J. Mach. Learn. Res..
[9] Mario Marchand,et al. Learning with Decision Lists of Data-Dependent Features , 2005, J. Mach. Learn. Res..
[10] Thore Graepel,et al. From Margin to Sparsity , 2000, NIPS.
[11] S. Ben-David,et al. Combinatorial Variability of Vapnik-chervonenkis Classes with Applications to Sample Compression Schemes , 1998, Discrete Applied Mathematics.
[13] Manfred K. Warmuth,et al. Sample compression, learnability, and the Vapnik-Chervonenkis dimension , 1995, Machine Learning.
[14] Jinbo Bi,et al. Dimensionality Reduction via Sparse Support Vector Machines , 2003, J. Mach. Learn. Res..
[15] Shahar Mendelson,et al. Rademacher averages and phase transitions in Glivenko-Cantelli classes , 2002, IEEE Trans. Inf. Theory.
[16] Kristin P. Bennett,et al. Combining support vector and mathematical programming methods for classification , 1999 .
[17] J. Langford. Tutorial on Practical Prediction Theory for Classification , 2005, J. Mach. Learn. Res..