The complexity probabilistic quasi-metric space

We introduce and study a probabilistic quasi-metric on the set of complexity functions, which provides an efficient framework to measure the distance from a complexity function f to another one g in the case that f is asymptotically more efficient than g. In this context we also obtain a version of the Banach fixed point theorem which allows us to show that the functionals associated both to Divide and Conquer algorithms and Quicksort algorithms have a unique fixed point.

[1]  Salvador Romaguera,et al.  Characterizations of metrizable topological vector spaces and their asymmetric generalizations in terms of fuzzy (quasi-)norms , 2010, Fuzzy Sets Syst..

[2]  Salvador Romaguera,et al.  Partial metric monoids and semivaluation spaces , 2005 .

[3]  P. Veeramani,et al.  On some results of analysis for fuzzy metric spaces , 1997, Fuzzy Sets Syst..

[4]  Valentín Gregori,et al.  Fuzzy quasi-metric spaces , 2004 .

[5]  Fletcher Quasi-Uniform Spaces , 1982 .

[6]  Salvador Romaguera,et al.  Quasi-metric properties of complexity spaces , 1999 .

[7]  Gaoxun Zhang,et al.  On the normability of generalized Šerstnev PN spaces , 2008 .

[8]  Y. Cho,et al.  Quicksort algorithm: Application of a fixed point theorem in intuitionistic fuzzy quasi-metric spaces at a domain of words , 2009 .

[9]  L. M. García-Raffi,et al.  Applications of the complexity space to the General Probabilistic Divide and Conquer Algorithms , 2008 .

[10]  Hans-Peter A. Künzi,et al.  Nonsymmetric Distances and Their Associated Topologies: About the Origins of Basic Ideas in the Area of Asymmetric Topology , 2001 .

[11]  S. G. Matthews,et al.  Partial Metric Topology , 1994 .

[12]  Hans-Peter A. Künzi,et al.  On the Yoneda completion of a quasi-metric space , 2002, Theor. Comput. Sci..

[13]  Michel P. Schellekens,et al.  The Smyth completion: a common foundation for denotational semantics and complexity analysis , 1995, MFPS.

[14]  Michael B. Smyth,et al.  Totally bounded spaces and compact ordered spaces as domains of computation , 1991 .

[15]  Reza Saadati,et al.  Linear operators in finite dimensional probabilistic normed spaces , 2008 .

[16]  B. Schweizer,et al.  Statistical metric spaces. , 1960 .

[17]  Berthold Schweizer,et al.  Probabilistic Metric Spaces , 2011 .

[18]  Dorel Mihet,et al.  A Banach contraction theorem in fuzzy metric spaces , 2004, Fuzzy Sets Syst..

[19]  Salvador Romaguera,et al.  On the structure of the space of complexity partial functions , 2008, Int. J. Comput. Math..

[20]  S. K. Samanta,et al.  A comparative study of fuzzy norms on a linear space , 2008, Fuzzy Sets Syst..

[21]  A. W. Roscoe,et al.  Topology and category theory in computer science , 1991 .

[22]  Endre Pap,et al.  Fixed Point Theory in Probabilistic Metric Spaces , 2001 .

[23]  Salvador Romaguera,et al.  The Banach fixed point theorem in fuzzy quasi-metric spaces with application to the domain of words , 2007 .

[24]  P. V. Subrahmanyam,et al.  Cauchy sequences in quasi-pseudo-metric spaces , 1982 .

[25]  Robert Leroy Kruse,et al.  Data structures and program design , 1984 .

[26]  A. George,et al.  On some results in fuzzy metric spaces , 1994 .

[27]  The topological structure of a certain Menger space , 2007 .

[28]  Valentín Gregori,et al.  On fixed-point theorems in fuzzy metric spaces , 2002, Fuzzy Sets Syst..

[29]  Robert Lowen,et al.  Handbook of the History of General Topology , 1997 .

[30]  Salvador Romaguera,et al.  Sequence spaces and asymmetric norms in the theory of computational complexity , 2002 .