A new PCCA method: IDRA

Abstract IDRA (Intercriteria Decision Rule Approach), a new MCDA (Multiple Criteria Decision Aid) method which adopts the PCCA (Pairwise Criterion Comparison Approach) methodolgoy, is presented. It is based on two principal hypotheses about intercriteria information furnished by the decision maker: the mixed utility function, i.e. it is assumed that in the decision process both tradeoff and importance intercriteria information are considered; and bounded consistency, i.e. no constraint is imposed on the consistency of the intercriteria information.

[1]  Vincent Mousseau Problèmes liés à l'évaluation de l'importance relative des critères en aide multicritère à la décision : réflexions théoriques, expérimentations et implémentations informatiques , 1993 .

[2]  M. Roubens Some properties of choice functions based on valued binary relations , 1989 .

[3]  P. Fishburn Methods of Estimating Additive Utilities , 1967 .

[4]  Bernard Roy,et al.  Aide multicritère à la décision : méthodes et cas , 1993 .

[5]  Bertrand Mareschal,et al.  Prométhée: a new family of outranking methods in multicriteria analysis , 1984 .

[6]  Denis Bouyssou,et al.  Some remarks on the notion of compensation in MCDM , 1986 .

[7]  D. E. Bell,et al.  Decision making: Descriptive, normative, and prescriptive interactions. , 1990 .

[8]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[9]  Bernard Roy,et al.  Decision science or decision-aid science? , 1993 .

[10]  G. W. Fischer,et al.  Strategy compatibility, scale compatibility, and the prominence effect. , 1993 .

[11]  J. Dombi,et al.  A method for determining the weights of criteria: the centralized weights , 1986 .

[12]  Jean-Claude Vansnick,et al.  Measurement Theory and Decision Aid , 1990 .

[13]  Benedetto Matarazzo,et al.  A Pairwise Criterion Comparison Approach: The Mappac and Pragma Methods , 1990 .

[14]  Benedetto Matarazzo,et al.  Multicriterion analysis of preferences by means of pairwise actions and criterion comparisons ( MAPPACC) , 1986 .

[15]  A. Pascu Operational research '81: J.P. Brans (Ed.) Proceedings of the Ninth IFORS International Conference on Operational Research, Hamburg, Germany, July 20–24, 1981, North-Holland, Amsterdam, 1981, xx + 984 pages, Dfl.250.000 , 1982 .

[16]  A. Tversky,et al.  Contingent weighting in judgment and choice , 1988 .

[17]  W. Hoeffding,et al.  Rank Correlation Methods , 1949 .

[18]  B. Roy Méthodologie multicritère d'aide à la décision , 1985 .

[19]  Jean-Claude Vansnick On the problem of weights in multiple criteria decision making (the noncompensatory approach) , 1986 .

[20]  V. Belton A comparison of the analytic hierarchy process and a simple multi-attribute value function , 1986 .

[21]  P. Slovic Choice Between Equally Valued Alternatives. , 1975 .

[22]  O. Svenson Process descriptions of decision making. , 1979 .

[23]  Benedetto Matarazzo,et al.  Preference ranking global frequencies in multicriterion analysis (Pragma) , 1988 .

[24]  Pekka J. Korhonen,et al.  Multiple criteria decision support: The state of research and future directions , 1992, Comput. Oper. Res..

[25]  B. Roy THE OUTRANKING APPROACH AND THE FOUNDATIONS OF ELECTRE METHODS , 1991 .

[26]  M. Kendall Rank Correlation Methods , 1949 .

[27]  Denis Bouyssou,et al.  Noncompensatory and generalized noncompensatory preference structures , 1986 .

[28]  Baruch Fischhoff,et al.  Response Mode, Framing and Information-processing Effects in Risk Assessment , 1988 .

[29]  Peter Nijkamp,et al.  Qualitative multiple criteria choice analysis , 1990 .