Spot 2.0 - A Framework for LTL and \omega -Automata Manipulation

We present Spot 2.0, a C++ library with Python bindings and an assortment of command-line tools designed to manipulate LTL and \(\omega \)-automata in batch. New automata-manipulation tools were introduced in Spot 2.0; they support arbitrary acceptance conditions, as expressible in the Hanoi Omega Automaton format. Besides being useful to researchers who have automata to process, its Python bindings can also be used in interactive environments to teach \(\omega \)-automata and model checking.

[1]  Yann Thierry-Mieg,et al.  Symbolic Model-Checking Using ITS-Tools , 2015, TACAS.

[2]  Fabrice Kordon,et al.  Strength-Based Decomposition of the Property Büchi Automaton for Faster Model Checking , 2013, TACAS.

[3]  Jan Strejcek,et al.  On Refinement of Büchi Automata for Explicit Model Checking , 2015, SPIN.

[4]  Christel Baier,et al.  On-the-Fly Stuttering in the Construction of Deterministic omega -Automata , 2007, CIAA.

[5]  Fabrice Kordon,et al.  Three SCC-Based Emptiness Checks for Generalized Büchi Automata , 2013, LPAR.

[6]  Alexandre Duret-Lutz,et al.  Practical Stutter-Invariance Checks for ω-Regular Languages , 2015, SPIN.

[7]  Jan Kretínský,et al.  Rabinizer 3: Safraless Translation of LTL to Small Deterministic Automata , 2014, ATVA.

[8]  Keijo Heljanko,et al.  Testing LTL formula translation into Büchi automata , 2002, International Journal on Software Tools for Technology Transfer.

[9]  Lubos Brim,et al.  DiVinE 2.0: High-Performance Model Checking , 2009, 2009 International Workshop on High Performance Computational Systems Biology.

[10]  Alexandre Duret-Lutz Manipulating LTL Formulas Using Spot 1.0 , 2013, ATVA.

[11]  Jan Kretínský,et al.  The Hanoi Omega-Automata Format , 2015, CAV.

[12]  Alexandre Duret-Lutz,et al.  Compositional Approach to Suspension and Other Improvements to LTL Translation , 2013, SPIN.

[13]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[14]  Jan Strejcek,et al.  Effective Translation of LTL to Deterministic Rabin Automata: Beyond the (F, G)-Fragment , 2013, ATVA.

[15]  Lukasz Fronc,et al.  LTL Model Checking with Neco , 2013, ATVA.

[16]  Paul Gastin,et al.  Fast LTL to Büchi Automata Translation , 2001, CAV.

[17]  Vojtech Rehák,et al.  LTL to Büchi Automata Translation: Fast and More Deterministic , 2012, TACAS.

[18]  Souheib Baarir,et al.  SAT-Based Minimization of Deterministic \omega -Automata , 2015, LPAR.

[19]  Roman R. Redziejowski An Improved Construction of Deterministic Omega-automaton Using Derivatives , 2012, Fundam. Informaticae.

[20]  Jean-Michel Couvreur,et al.  On-the-Fly Verification of Linear Temporal Logic , 1999, World Congress on Formal Methods.

[21]  Fabrice Kordon,et al.  Model Checking Using Generalized Testing Automata , 2012, Trans. Petri Nets Other Model. Concurr..

[22]  Jan Kretínský,et al.  Deterministic Automata for the (F,G)-fragment of LTL , 2012, CAV.

[23]  Alfons Laarman,et al.  SpinS: Extending LTSmin with Promela through SpinJa , 2013, Electron. Notes Theor. Comput. Sci..

[24]  Denis Poitrenaud,et al.  SPOT: an extensible model checking library using transition-based generalized Bu/spl uml/chi automata , 2004, The IEEE Computer Society's 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, 2004. (MASCOTS 2004). Proceedings..

[25]  Gerard J. Holzmann,et al.  The SPIN Model Checker - primer and reference manual , 2003 .

[26]  Radek Pelánek,et al.  BEEM: Benchmarks for Explicit Model Checkers , 2007, SPIN.

[27]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[28]  Denis Poitrenaud,et al.  On-the-Fly Emptiness Checks for Generalized Büchi Automata , 2005, SPIN.

[29]  Alfons Laarman,et al.  LTSmin: High-Performance Language-Independent Model Checking , 2015, TACAS.

[30]  Robert K. Brayton,et al.  Deterministic w Automata vis-a-vis Deterministic Buchi Automata , 1994, ISAAC.

[31]  Christel Baier,et al.  Experiments with deterministic omega-automata for formulas of linear temporal logic , 2006, Theor. Comput. Sci..

[32]  Alexandre Duret-Lutz,et al.  LTL translation improvements in Spot 1.0 , 2014, Int. J. Crit. Comput. Based Syst..

[33]  Emden R. Gansner,et al.  An open graph visualization system and its applications to software engineering , 2000 .

[34]  Souheib Baarir,et al.  Mechanizing the Minimization of Deterministic Generalized Büchi Automata , 2014, FORTE.

[35]  Moshe Y. Vardi An Automata-Theoretic Approach to Linear Temporal Logic , 1996, Banff Higher Order Workshop.