The CMA Evolution Strategy: A Tutorial

This tutorial introduces the CMA Evolution Strategy (ES), where CMA stands for Covariance Matrix Adaptation. The CMA-ES is a stochastic, or randomized, method for real-parameter (continuous domain) optimization of non-linear, non-convex functions. We try to motivate and derive the algorithm from intuitive concepts and from requirements of non-linear, non-convex search in continuous domain.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[3]  N. Hansen,et al.  Convergence Properties of Evolution Strategies with the Derandomized Covariance Matrix Adaptation: T , 1997 .

[4]  Nikolaus Hansen,et al.  Verallgemeinerte individuelle Schrittweitenregelung in der Evolutionsstrategie , 1998 .

[5]  N. Hansen Invariance, Self-adaptation and Correlated Mutations in Evolution Strategies Invariance, Self-adaptation and Correlated Mutations in Evolution Strategies , 2000 .

[6]  Nikolaus Hansen,et al.  Invariance, Self-Adaptation and Correlated Mutations and Evolution Strategies , 2000, PPSN.

[7]  Kalyanmoy Deb,et al.  On self-adaptive features in real-parameter evolutionary algorithms , 2001, IEEE Trans. Evol. Comput..

[8]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[9]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[10]  Pedro Larrañaga,et al.  A Review on Estimation of Distribution Algorithms , 2002, Estimation of Distribution Algorithms.

[11]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[12]  Hans-Georg Beyer,et al.  Qualms Regarding the Optimality of Cumulative Path Length Control in CSA/CMA-Evolution Strategies , 2003, Evolutionary Computation.

[13]  Petros Koumoutsakos,et al.  Learning probability distributions in continuous evolutionary algorithms – a comparative review , 2004, Natural Computing.

[14]  Dirk P. Kroese,et al.  The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning , 2004 .

[15]  Hans-Georg Beyer,et al.  Performance analysis of evolutionary optimization with cumulative step length adaptation , 2004, IEEE Transactions on Automatic Control.

[16]  Petros Koumoutsakos,et al.  Learning Probability Distributions in Continuous Evolutionary Algorithms - a Comparative Review , 2004, Nat. Comput..

[17]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[18]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[19]  Dirk V. Arnold,et al.  Improving Evolution Strategies through Active Covariance Matrix Adaptation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[20]  Lih-Yuan Deng,et al.  The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning , 2006, Technometrics.

[21]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[22]  Dirk V. Arnold,et al.  Weighted multirecombination evolution strategies , 2006, Theor. Comput. Sci..

[23]  Petros Koumoutsakos,et al.  A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion , 2009, IEEE Transactions on Evolutionary Computation.

[24]  Nikolaus Hansen,et al.  Variable Metrics in Evolutionary Computation , 2009 .

[25]  Nikolaus Hansen,et al.  Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed , 2009, GECCO '09.

[26]  Tom Schaul,et al.  Exponential natural evolution strategies , 2010, GECCO '10.

[27]  Raymond Ros,et al.  Benchmarking a weighted negative covariance matrix update on the BBOB-2010 noiseless testbed , 2010, GECCO '10.

[28]  Nikolaus Hansen,et al.  Injecting External Solutions Into CMA-ES , 2011, ArXiv.

[29]  Marc Schoenauer,et al.  Multidisciplinary Optimization in the Design of Future Space Launchers , 2013 .

[30]  Anne Auger,et al.  Principled Design of Continuous Stochastic Search: From Theory to Practice , 2014, Theory and Principled Methods for the Design of Metaheuristics.

[31]  Anne Auger,et al.  How to Assess Step-Size Adaptation Mechanisms in Randomised Search , 2014, PPSN.

[32]  Thomas Bartz-Beielstein,et al.  Parallel Problem Solving from Nature – PPSN XIII , 2014, Lecture Notes in Computer Science.