Forests of Fuzzy Decision Trees

In inductive learning, to build decision trees is often arduous when there exists more than two classes to learn. In this paper, a method of decomposition of problems with more than two classes into several problems with only two classes is proposed. This decomposition enables the construction of a forest of fuzzy decision trees where each fuzzy decision tree is dedicated to the recognition of a single class against a combination of all the other classes. The construction of fuzzy decision trees is based on an extension of the ID3 algorithm which handles imprecision in data. A method to use such a forest of fuzzy decision trees to classify new cases is also proposed.

[1]  Usama M. Fayyad,et al.  The Attribute Selection Problem in Decision Tree Generation , 1992, AAAI.

[2]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[3]  M. Ramdani,et al.  Système d'induction formelle à base de connaissances imprécises , 1994 .

[4]  Bernadette Bouchon-Meunier,et al.  Learning from Imperfect Data , 1997 .

[5]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[6]  Jason Catlett,et al.  On Changing Continuous Attributes into Ordered Discrete Attributes , 1991, EWSL.

[7]  B. Bouchon-Meunier,et al.  Fuzzy partitioning using mathematical morphology in a learning scheme , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[8]  Sargur N. Srihari,et al.  On multiple classifier systems for pattern recognition , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems.

[9]  J. Ross Quinlan,et al.  Improved Use of Continuous Attributes in C4.5 , 1996, J. Artif. Intell. Res..

[10]  Sylvie Bothorel,et al.  Analyse d'image par arbre de décision flou : Application à la classification sémiologique des amas de microcalcifications en mammographie numérique , 1996 .

[11]  M. Shaw,et al.  Induction of fuzzy decision trees , 1995 .

[12]  Pierre Loonis Contribution à la minimisation de l'a priori en reconnaissance des formes : conception d'un prototype de trieuse automatique de poissons par vision artificielle en milieu industriel , 1996 .

[13]  Richard Weber,et al.  Fuzzy-ID3: A class of methods for automatic knowledge acquisition , 1992 .

[14]  L. Zadeh Probability measures of Fuzzy events , 1968 .