Spatial Downsampling of Surface Sources in the Forward Problem of Electrocardiography

The boundary element method is widely used to solve the forward problem of electrocardiography, i.e. to calculate the body surface potentials (BSP) caused by the heart’s electrical activity. This requires discretization of boundary surfaces between compartments of a torso model. Often, the resolution of the surface bounding the heart is chosen above 1 mm, which can lead to spikes in resulting BSPs. We demonstrate that this artifact is caused by discontinuous propagation of the wavefront on coarse meshes and can be avoided by blurring cardiac sources before spatial downsampling. We evaluate different blurring methods and show that Laplacian blurring reduces the BSP error 5-fold for both transmembrane voltages and extracellular potentials downsampled to 3 different resolutions. We suggest a method to find the optimal blurring parameter without having to compute BSPs using a fine mesh.