Measuring and Localizing Homology Classes

We develop a method for measuring and localizing homology classes. This involves two problems. First, we dene relevant notions of size for both a homology class and a homology group basis, using ideas from relative homology. Second, we propose an algorithm to compute the optimal homology basis, using techniques from persistent homology and nite eld algebra. Classes of the computed optimal basis are localized with cycles conveying their sizes. The algorithm runs in O( 4 n 3 log 2 n) time, where n is the size of the simplicial complex and is the Betti number of the homology group.

[1]  M. Mrozek,et al.  Homology Computation by Reduction of Chain Complexes , 1998 .

[2]  Herbert Edelsbrunner,et al.  An incremental algorithm for Betti numbers of simplicial complexes , 1993, SCG '93.

[3]  Frédéric Chazal,et al.  Weak feature size and persistent homology: computing homology of solids in Rn from noisy data samples , 2005, SCG.

[4]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[5]  Jeff Erickson,et al.  Optimally Cutting a Surface into a Disk , 2002, SCG '02.

[6]  Afra Zomorodian,et al.  Localized Homology , 2007, Shape Modeling International.

[7]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[8]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[9]  J. Friedman,et al.  Computing Betti Numbers via Combinatorial Laplacians , 1996, STOC '96.

[10]  Herbert Edelsbrunner,et al.  Extreme Elevation on a 2-Manifold , 2006, Discret. Comput. Geom..

[11]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[12]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[13]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[14]  Mathieu Desbrun,et al.  Removing excess topology from isosurfaces , 2004, TOGS.

[15]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[16]  Leonidas J. Guibas,et al.  Emerging Challenges in Computational Topology , 1999, ArXiv.

[17]  David Cohen-Steiner,et al.  Extending Persistence Using Poincaré and Lefschetz Duality , 2009, Found. Comput. Math..

[18]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[19]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[20]  David Cohen-Steiner,et al.  Vines and vineyards by updating persistence in linear time , 2006, SCG '06.

[21]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[22]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[23]  Hong Qin,et al.  Topology-driven surface mappings with robust feature alignment , 2005, VIS 05. IEEE Visualization, 2005..