Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks

[1]  Jun Ye,et al.  JILA SrI optical lattice clock with uncertainty of 2.0×10−18 , 2019, Metrologia.

[2]  Engineering Quantum States of Matter for Atomic Clocks in Shallow Optical Lattices. , 2019, Physical review letters.

[3]  D. Wineland,et al.  ^{27}Al^{+} Quantum-Logic Clock with a Systematic Uncertainty below 10^{-18}. , 2019, Physical review letters.

[4]  Wei Zhang,et al.  Crystalline optical cavity at 4  K with thermal-noise-limited instability and ultralow drift , 2018, Optica.

[5]  E. Peik,et al.  Optical clock comparison for Lorentz symmetry testing , 2018, Nature.

[6]  A. Ludlow,et al.  Atomic clock performance enabling geodesy below the centimetre level , 2018, Nature.

[7]  M. Schioppo,et al.  Atomic clock performance beyond the geodetic limit , 2018, 1807.11282.

[8]  W. Hänsel,et al.  Sub-mHz Spectral Purity Transfer for Next Generation Strontium Optical Atomic Clocks , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[9]  Jun Ye,et al.  Imaging Optical Frequencies with 100  μHz Precision and 1.1  μm Resolution. , 2017, Physical review letters.

[10]  M. Zucco,et al.  Geodesy and metrology with a transportable optical clock , 2017, 1705.04089.

[11]  E. Peik,et al.  Optical clock comparison test of Lorentz symmetry , 2018 .

[12]  E. Oelker,et al.  Ultrastable Silicon Cavity in a Continuously Operating Closed-Cycle Cryostat at 4 K. , 2017, Physical review letters.

[13]  W. Hänsel,et al.  Rapid electro-optic control of the carrier-envelope-offset frequency for ultra-low noise frequency combs , 2017, 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFC).

[14]  N Quintin,et al.  Test of Special Relativity Using a Fiber Network of Optical Clocks. , 2017, Physical review letters.

[15]  T. Legero,et al.  1.5 μm lasers with sub 10 mHz linewidth , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[16]  L. Sonderhouse,et al.  A Fermi-degenerate three-dimensional optical lattice clock , 2017, Science.

[17]  Tilo Steinmetz,et al.  All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation , 2017 .

[18]  M. L. Wall,et al.  Spin–orbit-coupled fermions in an optical lattice clock , 2016, Nature.

[19]  M. Schioppo,et al.  Ultrastable optical clock with two cold-atom ensembles , 2016, Nature Photonics.

[20]  Fritz Riehle,et al.  Optical clock networks , 2017, Nature Photonics.

[21]  Y. Kuroishi,et al.  Geopotential measurements with synchronously linked optical lattice clocks , 2016, Nature Photonics.

[22]  M. Lukin,et al.  Gravitational wave detection with optical lattice atomic clocks , 2016, 1606.01859.

[23]  C Sanner,et al.  Single-Ion Atomic Clock with 3×10(-18) Systematic Uncertainty. , 2016, Physical review letters.

[24]  Uwe Sterr,et al.  Noise and instability of an optical lattice clock , 2015, 1507.04949.

[25]  Manoj Das,et al.  Cryogenic optical lattice clocks , 2015, Nature Photonics.

[26]  Thomas Legero,et al.  8  ×  10⁻¹⁷ fractional laser frequency instability with a long room-temperature cavity. , 2015, Optics letters.

[27]  Fritz Riehle,et al.  Towards a Re-definition of the Second Based on Optical Atomic Clocks , 2015, 1501.02068.

[28]  T L Nicholson,et al.  Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty , 2014, Nature Communications.

[29]  K. V. Tilburg,et al.  Searching for dilaton dark matter with atomic clocks , 2014, 1405.2925.

[30]  E. Peik,et al.  Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks. , 2014, Physical review letters.

[31]  P Gill,et al.  Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants. , 2014, Physical review letters.

[32]  J. L. Hall,et al.  Reduction of residual amplitude modulation to 1 × 10⁻⁶ for frequency modulation and laser stabilization. , 2014, Optics letters.

[33]  P. Zoller,et al.  Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism , 2014, Science.

[34]  M. Pospelov,et al.  Hunting for topological dark matter with atomic clocks , 2013, Nature Physics.

[35]  Wei Zhang,et al.  An optical lattice clock with accuracy and stability at the 10−18 level , 2013, Nature.

[36]  Wei Zhang,et al.  Tenfold reduction of Brownian noise in high-reflectivity optical coatings , 2013, Nature Photonics.

[37]  Jun Ye,et al.  Optical spectrum analyzer with quantum-limited noise floor. , 2013, Physical review letters.

[38]  M. Bishof,et al.  A Quantum Many-Body Spin System in an Optical Lattice Clock , 2012, Science.

[39]  J. Ye,et al.  Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s. , 2012, Physical review letters.

[40]  S. Falke,et al.  Delivering pulsed and phase stable light to atoms of an optical clock , 2011, 1108.3729.

[41]  Lei Chen,et al.  A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity , 2011, Nature Photonics.

[42]  Hidetoshi Katori,et al.  Frequency comparison of optical lattice clocks beyond the Dick limit , 2011 .

[43]  D. Wineland,et al.  Optical Clocks and Relativity , 2010, Science.

[44]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[45]  Jun Ye,et al.  Nuclear spin effects in optical lattice clocks , 2007, 0704.0912.

[46]  D. Howe,et al.  The total deviation approach to long-term characterization of frequency stability , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[47]  A. Clairon,et al.  Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[48]  L S Ma,et al.  Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. , 1994, Optics letters.

[49]  Moore,et al.  Quantum projection noise: Population fluctuations in two-level systems. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[50]  G. J. Dick,et al.  Local Oscillator Induced Instabilities in Trapped Ion Frequency Standards , 1987 .