Cryo-EM structures of thylakoid-located voltage-dependent chloride channel VCCN1

[1]  D. Kramer,et al.  Impact of ion fluxes across thylakoid membranes on photosynthetic electron transport and photoprotection , 2021, Nature Plants.

[2]  Colin M. Palmer,et al.  Cryo-EM single-particle structure refinement and map calculation using Servalcat , 2021, bioRxiv.

[3]  Matthew P. Johnson,et al.  Cytochrome b6f - Orchestrator of photosynthetic electron transfer. , 2021, Biochimica et biophysica acta. Bioenergetics.

[4]  W. Hendrickson,et al.  Structural and functional characterization of the bestrophin-2 anion channel , 2020, Nature Structural & Molecular Biology.

[5]  K. Solymosi,et al.  K+ and Cl− channels/transporters independently fine-tune photosynthesis in plants , 2019, Scientific Reports.

[6]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[7]  S. Long,et al.  Molecular mechanisms of gating in the calcium-activated chloride channel bestrophin , 2018, bioRxiv.

[8]  S. Long,et al.  An allosteric mechanism of inactivation in the calcium-dependent chloride channel BEST1 , 2018, The Journal of general physiology.

[9]  A. Harada,et al.  The Rab11-binding protein RELCH/KIAA1468 controls intracellular cholesterol distribution , 2018, The Journal of cell biology.

[10]  Fei Long,et al.  Overview of refinement procedures within REFMAC5: utilizing data from different sources , 2018, Acta crystallographica. Section D, Structural biology.

[11]  J. Pulido,et al.  Bestrophin 1 and retinal disease , 2017, Progress in Retinal and Eye Research.

[12]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[13]  S. Long,et al.  Distinct regions that control ion selectivity and calcium-dependent activation in the bestrophin ion channel , 2016, Proceedings of the National Academy of Sciences.

[14]  K. Solymosi,et al.  A voltage-dependent chloride channel fine-tunes photosynthesis in plants , 2016, Nature Communications.

[15]  Zhikun Duan,et al.  A bestrophin‐like protein modulates the proton motive force across the thylakoid membrane in Arabidopsis , 2016, Journal of integrative plant biology.

[16]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[17]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[18]  J. Berry,et al.  Ion antiport accelerates photosynthetic acclimation in fluctuating light environments , 2014, Nature Communications.

[19]  E. Gouaux,et al.  Screening and large-scale expression of membrane proteins in mammalian cells for structural studies , 2014, Nature Protocols.

[20]  S. Long,et al.  Structure and insights into the function of a Ca2+-activated Cl− channel , 2014, Nature.

[21]  Burkhard Rost,et al.  Structure and selectivity in bestrophin ion channels , 2014, Science.

[22]  G. Murshudov,et al.  Conformation-independent structural comparison of macromolecules with ProSMART , 2014, Acta crystallographica. Section D, Biological crystallography.

[23]  J. Schroeder,et al.  Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis , 2014, Proceedings of the National Academy of Sciences.

[24]  G. Finazzi,et al.  A Thylakoid-Located Two-Pore K+ Channel Controls Photosynthetic Light Utilization in Plants , 2013, Science.

[25]  Matthew P. Johnson,et al.  Rethinking the existence of a steady-state Δψ component of the proton motive force across plant thylakoid membranes , 2013, Photosynthesis Research.

[26]  William A Catterall,et al.  Ion Channel Voltage Sensors: Structure, Function, and Pathophysiology , 2010, Neuron.

[27]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[28]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[29]  Corella S. Casas-Delucchi,et al.  Modulation of protein properties in living cells using nanobodies , 2010, Nature Structural &Molecular Biology.

[30]  Lan-Ying Lee,et al.  Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method , 2009, Plant Methods.

[31]  P. Pospíšil Production of reactive oxygen species by photosystem II. , 2009, Biochimica et biophysica acta.

[32]  S. Sligar,et al.  Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. , 2009, Methods in enzymology.

[33]  J. Sheen,et al.  Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis , 2007, Nature Protocols.

[34]  Eric Gouaux,et al.  Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. , 2006, Structure.

[35]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[36]  G. Schönknecht,et al.  Patch clamp study of the voltage-dependent anion channel in the thylakoid membrane , 1995, The Journal of Membrane Biology.

[37]  John Allen,et al.  Photosynthesis of ATP—Electrons, Proton Pumps, Rotors, and Poise , 2002, Cell.

[38]  K. Niyogi,et al.  Non-photochemical quenching. A response to excess light energy. , 2001, Plant physiology.

[39]  B. Wallace,et al.  HOLE: a program for the analysis of the pore dimensions of ion channel structural models. , 1996, Journal of molecular graphics.

[40]  R. Wagner,et al.  Ion channels in the thylakoid membrane (a patch-clamp study) , 1993 .

[41]  V. Walbot,et al.  Transient expression analysis in plants using firefly luciferase reporter gene. , 1992, Methods in enzymology.

[42]  G von Heijne,et al.  The ‘positive‐inside rule’ applies to thylakoid membrane proteins , 1991, FEBS letters.

[43]  R. Hedrich,et al.  A voltage-dependent chloride channel in the photosynthetic membrane of a higher plant , 1988, Nature.

[44]  W. Catterall,et al.  Structure and function of voltage-sensitive ion channels. , 1988, Science.

[45]  H. Witt,et al.  Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of the electric field. , 1979, Biochimica et biophysica acta.

[46]  S. Izawa,et al.  Light-dependent redistribution of ions in suspensions of chloroplast thylakoid membranes. , 1974, Proceedings of the National Academy of Sciences of the United States of America.