From \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma$\end{document} emissions to (n,xn) cross sections of intere

Abstract.During the last 10 years, in the general context of nuclear energy applications and future reactors development, our collaboration has performed measurements of (n,x n$\gamma$ cross sections to study (n,xn) reactions. Large sets of new and accurate experimental data have been produced on a variety of nuclei from 7Li to 238U. Comparisons with nuclear reaction code calculations have shown that the predictions of these exclusive cross sections are a real challenge for the theoretical codes. Indeed many processes are involved as evaporation, fission if fissionable nucleus, direct and pre-equilibrium reactions, etc. All these processes should be simultaneously well described by the models that using nuclear structure description for optical potential, level densities, decay scheme, etc. In this article, we review what we have learned since the last P(ND)2 workshop held in 2005 (A.J.M. Plompen, Proceedings of the Perspectives on Nuclear data for the Next Decade Workshop, Bruyères-le-Châtel, France, 26-28 September 2005, NEA Report N° 6121, p. 151) and highlight how we can further progress in this field in order to provide new, complete, accurate and relevant experimental data.

[1]  P. Garrett,et al.  Pu-239 (n, 2n) Pu-238 cross-section deduced using a combination of experiment and theory , 2002 .

[2]  Young,et al.  207,208Pb(n,xn gamma ) reactions for neutron energies from 3 to 200 MeV. , 1994, Physical review. C, Nuclear physics.

[3]  K. Zuber,et al.  γproduction and neutron inelastic scattering cross sections for76Ge , 2013 .

[4]  A.J.M. Plompen,et al.  Global characterisation of the GELINA facility for high-resolution neutron time-of-flight measurements by Monte Carlo simulations , 2010 .

[5]  C. Borcea,et al.  Method Developing and Testing for Inelastic Scattering Measurements at the GELINA Facility , 2011 .

[6]  A. Santamarina,et al.  Improvement of 238U Inelastic Scattering Cross Section for an Accurate Calculation of Large Commercial Reactors , 2014 .

[7]  T. Egidy,et al.  Systematics of nuclear level density parameters , 2003 .

[8]  M. Nyman,et al.  The limits of the GAINS spectrometer , 2014 .

[9]  M. W. Herman,et al.  Elastic and inelastic scattering of neutrons on 238U nucleus , 2014 .

[10]  A. Hartmann,et al.  Inelastic scattering of fast neutrons from excited states in 56Fe , 2014 .

[11]  Stéphane Goriely,et al.  A Hartree-Fock Nuclear Mass Table , 2001 .

[12]  Mark B. Chadwick,et al.  Measurements and calculations of {sup 238}U(n, xn{gamma}) partial {gamma}-ray cross sections. , 2003 .

[13]  N. M. Larson,et al.  ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data , 2011 .

[14]  Arjan J. Koning,et al.  Modern Nuclear Data Evaluation with the TALYS Code System , 2012 .

[15]  Patrick Talou,et al.  New Work on Updating and Extending the Nuclear Data Standards , 2012 .

[16]  N. Fotiades,et al.  Gamma-Ray Production Cross Sections in Multiple Channels for Neutron-Induced Reaction on 48Ti for En = 1 to 200 MeV , 2006 .

[17]  A. G. W. Cameron,et al.  A COMPOSITE NUCLEAR-LEVEL DENSITY FORMULA WITH SHELL CORRECTIONS , 1965 .

[18]  E. Bauge,et al.  Lane consistent, semimicroscopic nucleon nucleus optical model , 2001 .

[19]  Arjan J. Koning,et al.  Local and global nucleon optical models from 1 keV to 200 MeV , 2003 .

[20]  K. H. Böckhoff,et al.  A new pulse compression system for intense relativistic electron beams , 1985 .

[21]  P. Garrett,et al.  Yttrium ENDF/B-VII Data from Theory and LANSCE/GEANIE Measurements and Covariances Estimated using Bayesian and Monte-Carlo Methods , 2007 .

[22]  C. Borcea,et al.  The gamma efficiency of the GAINS spectrometer , 2010 .

[23]  M. Kerveno,et al.  Cross-section measurements for the 56Fe(n, xnγ) reactions , 2014 .

[24]  Arjan J. Koning,et al.  High Resolution Measurement of Neutron Inelastic Scattering and (n,2n) Cross-Sections for 209Bi , 2007 .

[25]  G. Mitchell,et al.  (n,2n) and (n,3n) cross-sections of neutron-induced reactions on 150Sm for En=1–35 MeV , 2010 .

[26]  Arjan J. Koning,et al.  Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method , 2008 .

[27]  Stéphane Goriely,et al.  Microscopic nuclear level densities for practical applications , 2001 .

[28]  Large Wilson loops with overlap and clover fermions: Two-loop evaluation of the b-quark mass shift and the quark–antiquark potential , 2005, hep-lat/0509039.

[30]  M. W. Herman,et al.  EMPIRE: Nuclear Reaction Model Code System for Data Evaluation , 2007 .

[31]  A. Koning,et al.  Temperature-dependent combinatorial level densities with the D1M Gogny force , 2012 .

[32]  R. Capote,et al.  Recent work leading towards a new evaluation of the neutron standards , 2015 .

[33]  G. Mitchell,et al.  Effect of preequilibrium spin distribution on {sup 48}Ti +n cross sections , 2007 .

[34]  H. G. Hughes,et al.  Cross-Section Evaluations to 150 MeV for Accelerator-Driven Systems and Implementation in MCNPX , 1999 .

[35]  M. Kerveno,et al.  (n,xn γ) reaction cross section measurements for (n,xn) reaction studies , 2013 .

[36]  G. Noguere,et al.  High resolution measurement of neutron inelastic scattering cross-sections for 23Na , 2012 .

[37]  T. Kawano,et al.  Production of isomers by neutron-induced inelastic scattering on 193Ir and influence of spin distribution in the pre-equilibrium process , 2006 .

[38]  E. Bauge,et al.  Semimicroscopic nucleon-nucleus spherical optical model for nuclei with A>=40 at energies up to 200 MeV , 1998 .

[39]  D. Filipescu,et al.  Cross sections for inelastic scattering of neutrons on28Si and comparison with the25Mg(α,n)28Si reaction , 2013 .

[40]  C. Brune Gaussian quadrature applied to experimental /γ-ray yields , 2002 .

[41]  H. Vonach,et al.  Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250 , 1973 .

[42]  Arjan J. Koning,et al.  Measurement of 232Th(n,5n γ) cross sections from 29 MeV to 42 MeV , 2014 .

[43]  R. Haight,et al.  Al-27 (n, x gamma) reactions for neutron energies from 3 to 400 MeV , 1998 .

[44]  P. Baumann,et al.  A measurement of (n,xnγ) cross sections for 208Pb from threshold up to 20 MeV , 2008 .

[45]  Valentin T. Jordanov,et al.  Digital synthesis of pulse shapes in real time for high resolution radiation spectroscopy , 1994 .

[46]  F. M. Prados-Estévez,et al.  Neutron scattering differential cross sections for 23 Na from 1.5 to 4.5 MeV , 2015 .

[47]  Raman,et al.  Density of discrete levels in 116Sn. , 1993, Physical review. C, Nuclear physics.

[48]  L. Oláh,et al.  A new HPGe setup at Gelina for measurement of gamma-ray production cross-sections from inelastic neutron scattering , 2004 .

[49]  Young,et al.  Multiple preequilibrium emission in Feshbach-Kerman-Koonin analyses. , 1994, Physical review. C, Nuclear physics.