Mobius functions of lattices
暂无分享,去创建一个
[1] Christos A. Athanasiadis,et al. Algebraic combinatorics of graph spectra, subspace arrangements and Tutte polynomials , 1996 .
[2] Winfried Geyer. On Tamari lattices , 1994, Discret. Math..
[3] Curtis Greene,et al. A Class of Lattices with Möbius Function ± 1, 0 , 1988, Eur. J. Comb..
[4] George Markowsky,et al. Primes, irreducibles and extremal lattices , 1992 .
[5] P. Orlik,et al. Combinatorics and topology of complements of hyperplanes , 1980 .
[6] Curtis Greene,et al. Posets of shuffles , 1988, J. Comb. Theory, Ser. A.
[7] László Lovász,et al. Linear decision trees: volume estimates and topological bounds , 1992, STOC '92.
[8] László Lovász,et al. Linear decision trees, subspace arrangements and Möbius functions , 1994 .
[9] Victor Reiner,et al. Non-crossing partitions for classical reflection groups , 1997, Discret. Math..
[10] Germain Kreweras,et al. Sur les partitions non croisees d'un cycle , 1972, Discret. Math..
[11] G. Rota. On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .
[12] Svante Linusson. A Class of Lattices Whose Intervals are Spherical or Contractible , 1999, Eur. J. Comb..
[13] C. Procesi,et al. Wonderful models of subspace arrangements , 1995 .
[14] Victor Reiner,et al. The higher Stasheff-Tamari posets , 1996 .
[15] Thomas Brylawski,et al. The lattice of integer partitions , 1973, Discret. Math..
[16] R. Stanley,et al. Supersolvable lattices , 1972 .
[17] Dov Tamari,et al. Problèmes d'associativité: Une structure de treillis finis induite par une loi demi-associative , 1967 .
[18] H. Whitney. A logical expansion in mathematics , 1932 .
[19] Samuel Huang,et al. Problems of Associativity: A Simple Proof for the Lattice Property of Systems Ordered by a Semi-associative Law , 1972, J. Comb. Theory, Ser. A.
[20] Thomas Zaslavsky,et al. The Geometry of Root Systems and Signed Graphs , 1981 .
[21] Bruce E. Sagan,et al. A Generalization of Rota′s NBC Theorem , 1995 .