Mobius functions of lattices

Abstract We introduce the concept of a bounded below set in a lattice. This can be used to give a generalization of Rota's broken circuit theorem to any finite lattice. We then show how this result can be used to compute and combinatorially explain the Mobius function in various examples including non-crossing set partitions, shuffle posets, and integer partitions in dominance order. Next we present a generalization of Stanley's theorem that the characteristic polynomial of a semimodular supersolvable lattice factors over the integers. We also give some applications of this second main theorem, including the Tamari lattices.

[1]  Christos A. Athanasiadis,et al.  Algebraic combinatorics of graph spectra, subspace arrangements and Tutte polynomials , 1996 .

[2]  Winfried Geyer On Tamari lattices , 1994, Discret. Math..

[3]  Curtis Greene,et al.  A Class of Lattices with Möbius Function ± 1, 0 , 1988, Eur. J. Comb..

[4]  George Markowsky,et al.  Primes, irreducibles and extremal lattices , 1992 .

[5]  P. Orlik,et al.  Combinatorics and topology of complements of hyperplanes , 1980 .

[6]  Curtis Greene,et al.  Posets of shuffles , 1988, J. Comb. Theory, Ser. A.

[7]  László Lovász,et al.  Linear decision trees: volume estimates and topological bounds , 1992, STOC '92.

[8]  László Lovász,et al.  Linear decision trees, subspace arrangements and Möbius functions , 1994 .

[9]  Victor Reiner,et al.  Non-crossing partitions for classical reflection groups , 1997, Discret. Math..

[10]  Germain Kreweras,et al.  Sur les partitions non croisees d'un cycle , 1972, Discret. Math..

[11]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[12]  Svante Linusson A Class of Lattices Whose Intervals are Spherical or Contractible , 1999, Eur. J. Comb..

[13]  C. Procesi,et al.  Wonderful models of subspace arrangements , 1995 .

[14]  Victor Reiner,et al.  The higher Stasheff-Tamari posets , 1996 .

[15]  Thomas Brylawski,et al.  The lattice of integer partitions , 1973, Discret. Math..

[16]  R. Stanley,et al.  Supersolvable lattices , 1972 .

[17]  Dov Tamari,et al.  Problèmes d'associativité: Une structure de treillis finis induite par une loi demi-associative , 1967 .

[18]  H. Whitney A logical expansion in mathematics , 1932 .

[19]  Samuel Huang,et al.  Problems of Associativity: A Simple Proof for the Lattice Property of Systems Ordered by a Semi-associative Law , 1972, J. Comb. Theory, Ser. A.

[20]  Thomas Zaslavsky,et al.  The Geometry of Root Systems and Signed Graphs , 1981 .

[21]  Bruce E. Sagan,et al.  A Generalization of Rota′s NBC Theorem , 1995 .