Parallel coordinate descent methods for big data optimization

[1]  Yurii Nesterov,et al.  Subgradient methods for huge-scale optimization problems , 2013, Mathematical Programming.

[2]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[3]  Ming Yan,et al.  Parallel and distributed sparse optimization , 2013, 2013 Asilomar Conference on Signals, Systems and Computers.

[4]  Peter Richtárik,et al.  On optimal probabilities in stochastic coordinate descent methods , 2013, Optim. Lett..

[5]  Peter Richtárik,et al.  Distributed Coordinate Descent Method for Learning with Big Data , 2013, J. Mach. Learn. Res..

[6]  Peter Richtárik,et al.  Inexact Coordinate Descent: Complexity and Preconditioning , 2013, J. Optim. Theory Appl..

[7]  Ambuj Tewari,et al.  On the Nonasymptotic Convergence of Cyclic Coordinate Descent Methods , 2013, SIAM J. Optim..

[8]  Avleen Singh Bijral,et al.  Mini-Batch Primal and Dual Methods for SVMs , 2013, ICML.

[9]  Ion Necoara,et al.  A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints , 2013, Comput. Optim. Appl..

[10]  Ion Necoara,et al.  Efficient parallel coordinate descent algorithm for convex optimization problems with separable constraints: Application to distributed MPC , 2013, 1302.3092.

[11]  Inderjit S. Dhillon,et al.  Scalable Coordinate Descent Approaches to Parallel Matrix Factorization for Recommender Systems , 2012, 2012 IEEE 12th International Conference on Data Mining.

[12]  Ambuj Tewari,et al.  Feature Clustering for Accelerating Parallel Coordinate Descent , 2012, NIPS.

[13]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[14]  Pradeep Ravikumar,et al.  Nearest Neighbor based Greedy Coordinate Descent , 2011, NIPS.

[15]  Peter Richtárik,et al.  Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function , 2011, Mathematical Programming.

[16]  Stephen J. Wright,et al.  Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent , 2011, NIPS.

[17]  Joseph K. Bradley,et al.  Parallel Coordinate Descent for L1-Regularized Loss Minimization , 2011, ICML.

[18]  Alejandro Ribeiro,et al.  Accelerated dual descent for network optimization , 2011, Proceedings of the 2011 American Control Conference.

[19]  S. Osher,et al.  Coordinate descent optimization for l 1 minimization with application to compressed sensing; a greedy algorithm , 2009 .

[20]  Adrian S. Lewis,et al.  Randomized Methods for Linear Constraints: Convergence Rates and Conditioning , 2008, Math. Oper. Res..

[21]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[22]  R. Vershynin,et al.  A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.

[23]  Andrzej Ruszczynski,et al.  On Convergence of an Augmented Lagrangian Decomposition Method for Sparse Convex Optimization , 1995, Math. Oper. Res..

[24]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[25]  Peter Richtárik,et al.  Efficient Serial and Parallel Coordinate Descent Methods for Huge-Scale Truss Topology Design , 2011, OR.

[26]  Peter Richtárik,et al.  Efficiency of randomized coordinate descent methods on minimization problems with a composite objective function , 2011 .

[27]  S. Shalev-Shwartz,et al.  Stochastic Methods for l1-regularized Loss Minimization , 2011, J. Mach. Learn. Res..