Tertiary motifs revealed in analyses of higher-order RNA junctions.

[1]  N. Seeman,et al.  The general structure of transfer RNA molecules. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. Garrett,et al.  Evolutionary relationships amongst archaebacteria. A comparative study of 23 S ribosomal RNAs of a sulphur-dependent extreme thermophile, an extreme halophile and a thermophilic methanogen. , 1987, Journal of molecular biology.

[3]  K. Flaherty,et al.  Three-dimensional structure of a hammerhead ribozyme , 1994, Nature.

[4]  N. Seeman,et al.  Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB). A nomenclature of junctions and branchpoints in nucleic acids. Recommendations 1994. , 1995, European journal of biochemistry.

[5]  N. Seeman,et al.  A nomenclature of junctions and branchpoints in nucleic acids. , 1995, Nucleic acids research.

[6]  A nomenclature of junctions and branchpoints in nucleic acids. Recommendations 1994: Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) , 1995 .

[7]  C. Kundrot,et al.  Crystal Structure of a Group I Ribozyme Domain: Principles of RNA Packing , 1996, Science.

[8]  E Westhof,et al.  New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme. , 1996, Chemistry & biology.

[9]  B. Stoddard,et al.  Capturing the Structure of a Catalytic RNA Intermediate: The Hammerhead Ribozyme , 1996, Science.

[10]  N. Seeman,et al.  A nomenclature of junctions and branchpoints in nucleic acids. , 1995, Nucleic Acids Research.

[11]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[12]  D. Lilley,et al.  Global structure of four-way RNA junctions studied using fluorescence resonance energy transfer. , 1998, RNA.

[13]  D. Lilley,et al.  Folding of branched RNA species , 1998, Biopolymers.

[14]  E. Westhof,et al.  A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs. , 1998, Journal of molecular biology.

[15]  D. Lilley,et al.  Structure and activity of the hairpin ribozyme in its natural junction conformation: effect of metal ions. , 1998, Biochemistry.

[16]  Structure and activity of the hairpin ribozyme in its natural junction conformation: effect of metal ions. , 1998 .

[17]  T. Earnest,et al.  X-ray crystal structures of 70S ribosome functional complexes. , 1999, Science.

[18]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[19]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[20]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[21]  D. Lilley,et al.  Structures of helical junctions in nucleic acids , 2000, Quarterly Reviews of Biophysics.

[22]  Thomas A. Steitz,et al.  RNA tertiary interactions in the large ribosomal subunit: The A-minor motif , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  E. Westhof,et al.  Geometric nomenclature and classification of RNA base pairs. , 2001, RNA.

[24]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[25]  S C Harvey,et al.  AA.AG@helix.ends: A:A and A:G base-pairs at the ends of 16 S and 23 S rRNA helices. , 2001, Journal of molecular biology.

[26]  E. Westhof,et al.  Motif prediction in ribosomal RNAs Lessons and prospects for automated motif prediction in homologous RNA molecules. , 2002, Biochimie.

[27]  N. B. Leontisa,et al.  Motif prediction in ribosomal RNAs Lessons and prospects for automated motif prediction in homologous RNA molecules , 2002 .

[28]  K. Zhou,et al.  Crystal structure of an RNA tertiary domain essential to HCV IRES-mediated translation initiation , 2002, Nature Structural Biology.

[29]  Makio Tamura,et al.  Sequence and structural conservation in RNA ribose zippers. , 2002, Journal of molecular biology.

[30]  S. Steinberg,et al.  GU receptors of double helices mediate tRNA movement in the ribosome. , 2002, RNA.

[31]  Eric Westhof,et al.  The non-Watson-Crick base pairs and their associated isostericity matrices. , 2002, Nucleic acids research.

[32]  John D. Westbrook,et al.  Tools for the automatic identification and classification of RNA base pairs , 2003, Nucleic Acids Res..

[33]  Steven E Brenner,et al.  Three-dimensional motifs from the SCOR, structural classification of RNA database: extruded strands, base triples, tetraloops and U-turns. , 2004, Nucleic acids research.

[34]  Steven E Brenner,et al.  Three-dimensional motifs from the SCOR, structural classification of RNA database: extruded strands, base triples, tetraloops and U-turns. , 2004, Nucleic acids research.

[35]  A. S. Krasilnikov,et al.  Basis for Structural Diversity in Homologous RNAs , 2004, Science.

[36]  D. Lilley,et al.  Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements. , 2004, RNA.

[37]  T. Steitz,et al.  The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. , 2004, Journal of molecular biology.

[38]  A. Serganov,et al.  Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. , 2004, Chemistry & biology.

[39]  Scott A. Strobel,et al.  Crystal structure of a self-splicing group I intron with both exons , 2004, Nature.

[40]  Taekjip Ha,et al.  Conformational flexibility of four-way junctions in RNA. , 2004, Journal of molecular biology.

[41]  R. Montange,et al.  Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine , 2004, Nature.

[42]  T. Cech,et al.  Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. , 2004, Molecular cell.

[43]  N. Pace,et al.  Crystal structure of a bacterial ribonuclease P RNA. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Harry F Noller,et al.  RNA Structure: Reading the Ribosome , 2005, Science.

[45]  S. Brenner,et al.  RNA structural motifs: building blocks of a modular biomolecule , 2005, Quarterly Reviews of Biophysics.

[46]  Stephen R Holbrook,et al.  RNA structure: the long and the short of it , 2005, Current Opinion in Structural Biology.

[47]  Eric Westhof,et al.  Sequence to Structure (S2S): display, manipulate and interconnect RNA data from sequence to structure , 2005, Bioinform..

[48]  B. Golden,et al.  Crystal structure of a phage Twort group I ribozyme–product complex , 2005, Nature Structural &Molecular Biology.

[49]  D. Lilley,et al.  Folding and catalysis by the hairpin ribozyme , 1999, Biochemical Society transactions.

[50]  E. Westhof,et al.  The interaction networks of structured RNAs. , 2006, Nucleic acids research.

[51]  François Major,et al.  Automated extraction and classification of RNA tertiary structure cyclic motifs , 2006, Nucleic acids research.

[52]  E. Westhof,et al.  Topology of three-way junctions in folded RNAs. , 2006, RNA.

[53]  E. Westhof,et al.  Topology of three-way junctions in folded RNAs. , 2006, RNA.

[54]  N. Leontis,et al.  Structural and evolutionary classification of G/U wobble basepairs in the ribosome , 2006, Nucleic acids research.

[55]  S. Steinberg,et al.  Close Packing of Helices 3 and 12 of 16 S rRNA Is Required for the Normal Ribosome Function* , 2006, Journal of Biological Chemistry.

[56]  Ruth Nussinov,et al.  The ARTS web server for aligning RNA tertiary structures , 2006, Nucleic Acids Res..

[57]  S. Steinberg,et al.  G-ribo: a new structural motif in ribosomal RNA. , 2007, RNA.

[58]  David H Mathews,et al.  Predicting helical coaxial stacking in RNA multibranch loops. , 2007, RNA.

[59]  S. Holbrook Structural principles from large RNAs. , 2008, Annual review of biophysics.

[60]  John E. Stone,et al.  Using VMD: An Introductory Tutorial , 2008, Current protocols in bioinformatics.

[61]  D. Lilley,et al.  The complete VS ribozyme in solution studied by small-angle X-ray scattering. , 2008, Structure.

[62]  Eckart Bindewald,et al.  RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign , 2007, Nucleic Acids Res..

[63]  Craig L. Zirbel,et al.  FR3D: finding local and composite recurrent structural motifs in RNA 3D structures , 2007, Journal of mathematical biology.

[64]  T. Schlick,et al.  Annotation of tertiary interactions in RNA structures reveals variations and correlations. , 2008, RNA.

[65]  Anna Marie Pyle,et al.  Crystal Structure of a Self-Spliced Group II Intron , 2008, Science.

[66]  T. Schlick,et al.  Analysis of four-way junctions in RNA structures. , 2009, Journal of molecular biology.

[67]  Cody W. Geary,et al.  The UA_handle: a versatile submotif in stable RNA architectures† , 2008, Nucleic acids research.

[68]  Eric Westhof,et al.  The Dynamic Landscapes of RNA Architecture , 2009, Cell.

[69]  Eric Westhof,et al.  The Dynamic Landscapes of RNA Architecture , 2009, Cell.

[70]  Changbong Hyeon,et al.  Theory of RNA Folding: From Hairpins to Ribozymes , 2009 .