Design of CMOS analog integrated circuits as readout electronics for High-TC superconductor and semiconductor terahertz bolometric sensors

This PhD thesis deals with the design of a CMOS integrated circuit as a readout electronic for the THz bolometric detectors, either semiconductor or high-Tc superconductor. We study a chain of the analog signal processing composed of the differential fixed-gain amplifier for the temperature range of 40 to 400K, as well as of the high dynamic range low-pass active frequency filter. As the optimal amplifier configuration, a feedback-free architecture was selected in order to reach high frequency bandwidth (17MHz for gain 40dB), low quiescent current (Iq=2mA) and high input impedance. In this amplifier, the gain is set in the CMOS structure via two different methods and the accuracy is verified by wide-temperature measurements of the fabricated integrated circuit. Consequently, the behaviour of the frequency filters is examined namely in the stopband, aiming to increase the maximal cut-off frequency. As an outcome, two structures with low influence of real active elements' parameters are designed: improved type-II Sallen-Key and the structure based on the CCII- current conveyor. In the last part, the integrated CCII- with very low output impedance is presented.

[1]  Randall L. Geiger,et al.  Area/bandwidth tradeoffs for CMOS current mirrors , 1986 .

[2]  E. Sanchez-Sinencio,et al.  Frequency limitations of continuous-time OTA-C filters , 1988, 1988., IEEE International Symposium on Circuits and Systems.

[3]  Hugo Calleja An approach to amplifier frequency compensation , 2003, IEEE Trans. Educ..

[4]  Katsuji Kimura,et al.  A linear CMOS transconductance element of an adaptively biased source-coupled differential pair using a quadritail cell , 1996 .

[5]  R. Sallen,et al.  A practical method of designing RC active filters , 1955, IRE Transactions on Circuit Theory.

[6]  Ivan Koudar Variable gain differential current feedback amplifier , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[7]  Tianbing Chen,et al.  Operation of SiGe BiCMOS Technology Under Extreme Environments , 2005 .

[8]  George S. Moschytz,et al.  Fundamental frequency limitations in current-mode Sallen-Key filters , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[9]  Alain J. Kreisler,et al.  Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range , 2000 .

[10]  D. J. Perry,et al.  New multiple feedback active RC network , 1975 .

[11]  Damien Prêle Instrumentation cryogénique bas bruit et large bande en technologie SiGe , 2006 .

[12]  A. L. McWhorter,et al.  1/f noise and related surface effects in germanium , 1955 .

[13]  Peter Händel,et al.  Fundamental quantum 1/f noise in semiconductor devices , 1994 .

[14]  Donald T. Comer,et al.  A wideband integrated circuit amplifier for fixed-gain application , 1996 .

[15]  Christian Enz,et al.  Accurate MOS modelling for analog circuit simulation using the EKV model , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[16]  Sae Woo Nam,et al.  Cryogenic detectors based on superconducting transition-edge sensors for time-energy-resolved single-photon counters and for dark matter searches , 2000 .

[17]  R.P. Jindal,et al.  Compact Noise Models for MOSFETs , 2006, IEEE Transactions on Electron Devices.

[18]  S. Winkler,et al.  The Approximation Problem of Network Synthesis , 1954 .

[19]  F. C. Jain,et al.  A two-dimensional analytical model for MOSFETs operating at 77 K , 1989, Proceedings., Eighth University/Government/Industry Microelectronics Symposium.

[20]  Pradeep R. Padukone,et al.  A comparative study of multiple amplifier active RC biquadratic sections , 1981 .

[21]  K. H. Lundberg,et al.  Noise Sources in Bulk CMOS , 2002 .

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Jiann-Horng Tsay,et al.  Realizations of the single CCII biquads with high input impedance , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.

[24]  Christian Piguet,et al.  Low-power CMOS circuits - technology, logic design and CAD tools , 2005 .

[25]  Leonard T. Bruton,et al.  Network Transfer Functions Using the Concept of Frequency-Dependent Negative Resistance , 1969 .

[26]  Paul Horowitz,et al.  The Art of Electronics , 1980 .

[27]  Christian Ulysse Bolomètres à électrons chauds à supraconducteurs haute température critique pour les ondes submillimétriques : élaboration et caractérisations , 2003 .

[28]  B. T. Murphy,et al.  Unified field-effect transistor theory including velocity saturation , 1980 .

[29]  Yehea I. Ismail,et al.  A Compact and Accurate Temperature-Dependent Model for CMOS Circuit Delay , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[30]  F. Krummenacher,et al.  The EPFL-EKV MOSFET Model Equations for Simulation , 1998 .

[31]  M. Korenska,et al.  NONLINAR ULTRASONIC SPECTROSCOPY OF FIRED ROOF TILES , 2004 .

[32]  Denis Chouvaev Normal Metal Hot-Electron Microbolometer with Superconducting Andreev Mirrors , 2001 .

[33]  S. Natarajan,et al.  Optimal design of CCII-K circuits for high frequency applications , 1995, Proceedings of the Twenty-Seventh Southeastern Symposium on System Theory.

[35]  E. Seevinck,et al.  A versatile CMOS linear transconductor/square-law function , 1987 .

[36]  Kamil Vrba,et al.  Continuous-Time Multifunctional Filters with Wide Bandwidth Using Universal Voltage Conveyors , 2007, Sixth International Conference on Networking (ICN'07).

[37]  L. P. Huelsman Equal-valued-capacitor active-RC-network realisation of a 3rd-order lowpass Butterworth characteristic , 1971 .

[38]  Alain Fabre Third-generation current conveyor: a new helpful active element , 1995 .

[39]  J. Oehm,et al.  A wide range dB-linear variable gain CMOS amplifier , 1997, Proceedings of the 23rd European Solid-State Circuits Conference.

[40]  Apinunt Thanachayanont,et al.  1.5-V 900-/spl mu/W 40-dB CMOS variable gain amplifier , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[41]  H. A. Alzaher,et al.  A buffer-based baseband analog front end for CMOS bluetooth receivers , 2002 .

[42]  Mohamed A. Osman,et al.  An extended Tanh law MOSFET model for high temperature circuit simulation , 1995 .

[43]  I. Mucha Low-output-impedance CMOS voltage buffer , 1992 .

[44]  P. Aronhime,et al.  Transfer-function synthesis using a current conveyor , 1974 .

[45]  J. M. Rollett,et al.  Economical RC active lossy ladder filters , 1973 .

[46]  T. Serrano-Gotarredona,et al.  MOSFET mismatch in weak/moderate inversion: model needs and implications for analog design , 2003, ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705).

[47]  F. Hooge,et al.  Lattice scattering causes 1/ƒ noise , 1978 .

[48]  J. Schrieffer Theory of superconductivity , 1958 .

[49]  Alain J. Kreisler,et al.  Three-temperature model for hot electron superconducting bolometers based on high-T/sub c/ superconductor for terahertz applications , 2003 .

[50]  G. Matthaei,et al.  Design of microwave filters , 2002 .

[51]  Christopher Killian,et al.  Modern control technology , 1996 .

[52]  S. C. Dutta Roy,et al.  A circuit for floating inductance simulation , 1974 .

[53]  L.A. Sarmiento-Reyes,et al.  Synthesis of the CCII- using the nullor concept , 2000, Proceedings of the 2000 Third IEEE International Caracas Conference on Devices, Circuits and Systems (Cat. No.00TH8474).

[54]  C.W. Mangelsdorf A variable gain CMOS amplifier with exponential gain control , 2000, 2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103).

[55]  R. Koch,et al.  Superconducting devices. , 1991, Science.

[56]  Shen-Iuan Liu,et al.  CMOS differential difference current conveyors and their applications , 1996 .

[57]  Matthias Kroug,et al.  NbN Hot Electron Bolometric Mixers for a Quasi--Optical THz Receiver , 2001 .

[58]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[59]  A.B.M. Jansman,et al.  C-V characterization of MOS capacitors on high resistivity silicon substrate , 2003, ESSDERC '03. 33rd Conference on European Solid-State Device Research, 2003..

[60]  Alexander A. Balandin,et al.  The fundamental 1/f noise and the Hooge parameter in semiconductor quantum wires , 1999 .

[61]  A. van der Ziel,et al.  Noise in solid-state devices and lasers , 1970 .

[62]  Gerard Ghibaudo,et al.  Analysis of the kink effect in MOS transistors , 1990 .

[63]  C. Toumazou,et al.  A new high-frequency very low output-impedance CMOS buffer , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[64]  K. Smith,et al.  A second-generation current conveyor and its applications , 1970, IEEE Transactions on Circuit Theory.

[65]  Martin von Haartman,et al.  Low-frequency noise characterization, evaluation and modeling of advanced Si- and SiGe-based CMOS transistors , 2006 .

[66]  Leonard T. Bruton,et al.  Nonideal performance of two-amplifier positive-impedance converters , 1970 .

[67]  Y. Nakazawa,et al.  High Frequency Crystal Electromechanical Filters , 1962 .

[68]  Sanjit K. Mitra,et al.  Synthesis of Active RC One-Ports Using Generalized Impedance Converters , 1963 .

[69]  Adrian T. Lee,et al.  Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors , 2001 .

[70]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[71]  R. E. Massara,et al.  Design considerations for lowpass and highpass all-pole f.d.n.r. networks , 1978 .

[72]  Ka Nang Leung,et al.  Nested Miller compensation in low-power CMOS design , 2001 .

[73]  S. C. Dutta Roy,et al.  Active RC realisation of a 3rd-order lowpass Butterworth characteristic , 1972 .

[74]  Kenneth C. Smith,et al.  The current conveyor—A new circuit building block , 1968 .

[75]  Kamil Vrba,et al.  Measurements and Behavioral Modeling of Modern Conveyors , 2006 .

[76]  A. Sedra,et al.  Sensitivity and frequency limitations of biquadratic active filters , 1975 .

[77]  S. E. Schwarz,et al.  Antenna‐coupled infrared detectors , 1977 .

[78]  Fabrice Voisin Intégration d'une électronique cryogénique à faible niveau de bruit sous la forme de circuits ASIC en technologie CMOS pour la mise en œuvre de détecteurs bolométriques à supraconducteurs HTC , 2002 .

[79]  A. Antoniou Novel RC-active-network synthesis using generalized- immittance converters , 1970 .

[80]  O. Louveau,et al.  Patterning issues in superconducting nanowire single photon detector fabrication , 2007 .

[81]  A. van der Ziel,et al.  Unified presentation of 1/f noise in electron devices: fundamental 1/f noise sources , 1988, Proc. IEEE.

[82]  H.P. Vyas,et al.  Cryogenic behavior of scaled CMOS devices , 1984, 1984 International Electron Devices Meeting.