Optimal control of elliptic equations with positive measures

Optimal control problems without control costs in general do not possess solutions due to the lack of coercivity. However, unilateral constraints together with the assumption of existence of strictly positive solutions of a pre-adjoint state equation, are sufficient to obtain existence of optimal solutions in the space of Radon measures. Optimality conditions for these generalized minimizers can be obtained using Fenchel duality, which requires a non-standard perturbation approach if the control-to-observation mapping is not continuous ( e.g. , for Neumann boundary control in three dimensions). Combining a conforming discretization of the measure space with a semismooth Newton method allows the numerical solution of the optimal control problem.

[1]  Israel Gohberg,et al.  Unbounded Linear Operators , 1966 .

[2]  H. H. Schaefer,et al.  Topological Vector Spaces , 1967 .

[3]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[4]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[5]  R. Winther Error estimates for a galerkin approximation of a parabolic control problem , 1978 .

[6]  E. Casas L2 estimates for the finite element method for the Dirichlet problem with singular data , 1985 .

[7]  K. Hoffmann,et al.  Optimal Control of Partial Differential Equations , 1991 .

[8]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[9]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[10]  Kazufumi Ito,et al.  Lagrange multiplier approach to variational problems and applications , 2008, Advances in design and control.

[11]  Anton Schiela State Constrained Optimal Control Problems with States of Low Regularity , 2009, SIAM J. Control. Optim..

[12]  J. Rehberg,et al.  Hölder Continuity and Optimal Control for Nonsmooth Elliptic Problems , 2009 .

[13]  Georg Stadler,et al.  Elliptic optimal control problems with L1-control cost and applications for the placement of control devices , 2009, Comput. Optim. Appl..

[14]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[15]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[16]  Anton Schiela,et al.  Uniqueness criteria for solutions of the adjoint equation in state-constrained optimal control , 2010 .

[17]  K. Kunisch,et al.  A duality-based approach to elliptic control problems in non-reflexive Banach spaces , 2011 .

[18]  Gerd Wachsmuth,et al.  Convergence and regularization results for optimal control problems with sparsity functional , 2011 .

[19]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[20]  Karl Kunisch,et al.  Approximation of Elliptic Control Problems in Measure Spaces with Sparse Solutions , 2012, SIAM J. Control. Optim..

[21]  Michael Hinze,et al.  A note on the approximation of elliptic control problems with bang-bang controls , 2010, Computational Optimization and Applications.

[22]  Karl Kunisch,et al.  A measure space approach to optimal source placement , 2012, Comput. Optim. Appl..

[23]  Michel Cristofol,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[24]  Karl Kunisch,et al.  Optimal Control of Semilinear Elliptic Equations in Measure Spaces , 2014, SIAM J. Control. Optim..

[25]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .