A unifying approach to splitting-off
暂无分享,去创建一个
[1] Hiroyoshi Miwa,et al. NA-EDGE-CONNECTIVITY AUGMENTATION PROBLEMS BY ADDING EDGES( Network Design, Control and Optimization) , 2004 .
[2] Zeev Nutov. Approximating Rooted Connectivity Augmentation Problems , 2003, RANDOM-APPROX.
[3] W. Mader. A Reduction Method for Edge-Connectivity in Graphs , 1978 .
[4] András Frank,et al. On a theorem of Mader , 1992, Discret. Math..
[5] A. Bencz,et al. Covering Symmetric Supermodular Functions by Graphs + , 1998 .
[6] Zoltán Szigeti,et al. Covering symmetric semi-monotone functions , 2008, Discret. Appl. Math..
[7] András Frank. Augmenting Graphs to Meet Edge-Connectivity Requirements , 1992, SIAM J. Discret. Math..
[8] András Frank,et al. Preserving and Increasing Local Edge-Connectivity in Mixed Graphs , 1995, SIAM J. Discret. Math..
[9] Bill Jackson,et al. Local edge-connectivity augmentation in hypergraphs is NP-complete , 2010, Discret. Appl. Math..
[10] Attila Bernáth,et al. A New Approach to Splitting-Off , 2008, IPCO.
[11] Yuk Hei Chan,et al. Degree Bounded Network Design with Metric Costs , 2011, SIAM J. Comput..
[12] J. Petersen. Die Theorie der regulären graphs , 1891 .
[13] Zoltán Szigeti. Hypergraph connectivity augmentation , 1999, Math. Program..
[14] Toshimasa Ishii,et al. Minimum augmentation of local edge-connectivity between vertices and vertex subsets in undirected graphs , 2006, Discret. Appl. Math..
[15] Ben Cosh. Vertex splitting and connectivity augmentation in hypergraphs , 2000 .