Exploring cosmic origins with CORE: Effects of observer peculiar motion

We discuss the effects on the cosmic microwave background (CMB), cosmic infrared background (CIB), and thermal Sunyaev-Zeldovich effect due to the peculiar motion of an observer with respect to the CMB rest frame, which induces boosting effects. After a brief review of the current observational and theoretical status, we investigate the scientific perspectives opened by future CMB space missions, focussing on the Cosmic Origins Explorer (CORE) proposal. The improvements in sensitivity offered by a mission like CORE, together with its high resolution over a wide frequency range, will provide a more accurate estimate of the CMB dipole. The extension of boosting effects to polarization and cross-correlations will enable a more robust determination of purely velocity-driven effects that are not degenerate with the intrinsic CMB dipole, allowing us to achieve an overall signal-to-noise ratio of 13; this improves on the Planck detection and essentially equals that of an ideal cosmic-variance-limited experiment up to a multipole ℓ≃2000. Precise inter-frequency calibration will offer the opportunity to constrain or even detect CMB spectral distortions, particularly from the cosmological reionization epoch, because of the frequency dependence of the dipole spectrum, without resorting to precise absolute calibration. The expected improvement with respect to COBE-FIRAS in the recovery of distortion parameters (which could in principle be a factor of several hundred for an ideal experiment with the CORE configuration) ranges from a factor of several up to about 50, depending on the quality of foreground removal and relative calibration. Even in the case of ≃1 % accuracy in both foreground removal and relative calibration at an angular scale of 1̂, we find that dipole analyses for a mission like CORE will be able to improve the recovery of the CIB spectrum amplitude by a factor ≃ 17 in comparison with current results based on COBE-FIRAS. In addition to the scientific potential of a mission like CORE for these analyses, synergies with other planned and ongoing projects are also discussed.

T. Kitching | H. Kurki-Suonio | J. Bartlett | M. Kunz | J. Lesgourgues | A. Melchiorri | Z. Cai | E. Hivon | A. Banday | A. Lasenby | A. Challinor | F. Bouchet | P. Ade | J. Borrill | P. Bernardis | S. Hanany | S. Masi | J. Diego | V. Poulin | S. Clesse | M. Ashdown | M. Quartin | T. Kisner | C. Martins | M. Bersanelli | A. Bonaldi | C. Burigana | L. Danese | G. Zotti | J. Delabrouille | F. Finelli | M. Liguori | B. Maffei | N. Mandolesi | P. Mazzotta | P. Natoli | D. Paoletti | G. Patanchon | M. Piat | G. Polenta | M. Remazeilles | L. Toffolatti | M. Tomasi | J. Valiviita | B. Tent | P. Vielva | N. Vittorio | S. Feeney | S. Galli | M. Lattanzi | J. Melin | N. Trappe | Will Handley | A. Pollo | N. Bartolo | J. Chluba | E. D. Valentino | M. Gerbino | J. González-Nuevo | C. Hernandez-Monteagudo | M. López-Caniego | J. Rubiño-Martín | L. Salvati | T. Trombetti | M. Bilicki | G. Pisano | A. Coppolecchia | L. Lamagna | A. Paiella | A. Tartari | M. Zannoni | G. Gasperis | K. Kiiveri | V. Lindholm | P. Cabella | D. McCarthy | A. Notari | S. Ferraro | M. Negrello | M. Bonato | C. Tucker | D. Tramonte | J. Greenslade | A. Monfardini | M. Crook | A. Lapi | V. Vennin | M. Calvo | G. Luzzi | M. Roman | S. Grandis | M. Ballardini | S. Basak | D. Contreras | R. Fernández-Cobos | D. Molinari | F. Forastieri | L. Polastri | R. Allison | J. Errard | C. Hervías-Caimapo | R. Génova-Santos | F. Boulanger | M. Bucher | R. Banerji | T. Brinckmann | A. Buzzelli | C. Carvalho | G. Castellano | I. Colantoni | S. Hagstotz | M. Hills | K. Young | R. V. D. Weijgaert | A. Achúcarro | E. Martínez-González | A. Marco | D. Scott | G. D’Alessandro | F. T. B. collaboration | Maciej Bilicki | D. Scott | D. Scott

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  S. Masi,et al.  Exploring cosmic origins with CORE: Mitigation of systematic effects , 2017, 1707.04224.

[3]  P. A. R. Ade,et al.  Exploring cosmic origins with CORE: Survey requirements and mission design , 2017, Journal of Cosmology and Astroparticle Physics.

[4]  S. Masi,et al.  Exploring cosmic origins with CORE: The instrument , 2017, 1705.02170.

[5]  S. Masi,et al.  Exploring cosmic origins with CORE: B-mode component separation , 2017, 1704.04501.

[6]  A. V. Engelen,et al.  Reconstructing the primary CMB dipole , 2017, 1704.00718.

[7]  T. Kitching,et al.  Exploring cosmic origins with CORE: Cluster science , 2017, 1703.10456.

[8]  J. Aumont,et al.  Planck intermediate results LII. Planet flux densities , 2016, 1612.07151.

[9]  Peter A. R. Ade,et al.  The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters , 2016, Journal of Cosmology and Astroparticle Physics.

[10]  R. B. Partridge,et al.  Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps , 2016, 1609.07263.

[11]  Prado Mart'in-Moruno,et al.  Cosmology with moving bimetric fluids , 2016, 1608.06493.

[12]  G. Hilton,et al.  LiteBIRD: lite satellite for the study of B-mode polarization and inflation from cosmic microwave background radiation detection , 2016, Astronomical Telescopes + Instrumentation.

[13]  Jacques Delabrouille,et al.  Optimal scan strategies for future CMB satellite experiments , 2016, 1604.02290.

[14]  G. Zotti,et al.  Another look at distortions of the Cosmic Microwave Background spectrum , 2016 .

[15]  M. Quartin,et al.  Interpreting the CMB aberration and Doppler measurements: boost or intrinsic dipole? , 2016, 1603.02664.

[16]  J. Chluba Which spectral distortions does ΛCDM actually predict , 2016, 1603.02496.

[17]  K. Bolejko,et al.  Differential cosmic expansion and the Hubble flow anisotropy , 2015, 1512.07364.

[18]  G. Zotti,et al.  Another look to distortions of the CMB spectrum , 2015, 1512.04816.

[19]  M. Quartin,et al.  CMB all-scale blackbody distortions induced by linearizing temperature , 2015, 1510.08793.

[20]  D. Huterer,et al.  KINEMATIC DIPOLE DETECTION WITH GALAXY SURVEYS: FORECASTS AND REQUIREMENTS , 2015, 1509.05374.

[21]  Simone Ferraro,et al.  Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background. , 2015, Physical review letters.

[22]  J. Chluba,et al.  SPECTRAL DISTORTIONS OF THE CMB DIPOLE , 2015, 1505.06028.

[23]  M. Quartin,et al.  Improving Planck calibration by including frequency-dependent relativistic corrections , 2015, 1504.04897.

[24]  M. Quartin,et al.  On the proper kinetic quadrupole CMB removal and the quadrupole anomalies , 2015, 1504.02076.

[25]  G. W. Pratt,et al.  Planck 2015 results Special feature Planck 2015 results VIII . High Frequency Instrument data processing : Calibration and maps , 2016 .

[26]  R. B. Barreiro,et al.  Planck 2015 results - XXII. A map of the thermal Sunyaev-Zeldovich effect , 2015, 1502.01596.

[27]  Jean-Luc Starck,et al.  Testing foundations of modern cosmology with SKA all-sky surveys , 2015, 1501.03820.

[28]  J. Chluba,et al.  New operator approach to the CMB aberration kernels in harmonic space , 2014, 1403.6117.

[29]  A. Dolgov,et al.  CMB constraints on mass and coupling constant of light pseudoscalar particles , 2013, 1312.3558.

[30]  C. Burigana,et al.  Semi-analytical description of clumping factor and cosmic microwave background free–free distortions from reionization , 2013, 1310.6177.

[31]  M. Kamionkowski,et al.  Effect of aberration on partial-sky measurements of the cosmic microwave background temperature power spectrum , 2013, 1309.2285.

[32]  P. Tiwari,et al.  Dipole anisotropy in integrated linearly polarized flux density in NVSS data , 2013, 1308.3970.

[33]  A. Loeb,et al.  Constraining primordial black-hole bombs through spectral distortions of the cosmic microwave background , 2013, 1307.5176.

[34]  P. Tiwari,et al.  Dipole anisotropy in sky brightness and source count distribution in radio NVSS data , 2013, 1307.1947.

[35]  J. Chluba Distinguishing different scenarios of early energy release with spectral distortions of the cosmic microwave background , 2013, 1304.6121.

[36]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[37]  R. B. Barreiro,et al.  Planck 2013 results. V. LFI calibration , 2013, 1303.5066.

[38]  C. A. Oxborrow,et al.  Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove , 2013, 1303.5087.

[39]  J. Aumont,et al.  Planck2018 results , 2013, Astronomy & Astrophysics.

[40]  Z. Cai,et al.  A HYBRID MODEL FOR THE EVOLUTION OF GALAXIES AND ACTIVE GALACTIC NUCLEI IN THE INFRARED , 2013, 1303.2335.

[41]  R. Sunyaev,et al.  Unavoidable CMB spectral features and blackbody photosphere of our universe , 2013, 1302.6553.

[42]  D. Schwarz,et al.  Cosmic radio dipole from NVSS and WENSS , 2013, 1301.5559.

[43]  R. Schonrich Galactic Rotation and Solar Motion from Stellar Kinematics , 2012, 1207.3079.

[44]  D. Huterer,et al.  Dipoles in the sky , 2012, 1205.6476.

[45]  J. Chluba,et al.  PROBING THE INFLATON: SMALL-SCALE POWER SPECTRUM CONSTRAINTS FROM MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND ENERGY SPECTRUM , 2012, 1203.2681.

[46]  Jens Chluba,et al.  CMB at 2 × 2 order: the dissipation of primordial acoustic waves and the observable part of the associated energy release , 2012, 1202.0057.

[47]  R. Watkins,et al.  Hubble flow variance and the cosmic rest frame , 2012, 1201.5371.

[48]  M. Quartin,et al.  Measuring our peculiar velocity by ``pre-deboosting'' the CMB , 2011, 1112.1400.

[49]  R. Sunyaev,et al.  The evolution of CMB spectral distortions in the early Universe , 2011, 1109.6552.

[50]  Edward J. Wollack,et al.  INTERPRETATION OF THE ARCADE 2 ABSOLUTE SKY BRIGHTNESS MEASUREMENT , 2011 .

[51]  M. Halpern,et al.  The Primordial Inflation Explorer (PIXIE): a nulling polarimeter for cosmic microwave background observations , 2011, 1105.2044.

[52]  A. Kashlinsky,et al.  PROBING THE UNIVERSE'S TILT WITH THE COSMIC INFRARED BACKGROUND DIPOLE , 2011, 1104.0901.

[53]  G. Mamon,et al.  Is the 2MASS clustering dipole convergent , 2011, 1102.4356.

[54]  J. Chluba Aberrating the CMB sky: fast and accurate computation of the aberration kernel , 2011, 1102.3415.

[55]  G. Starkman,et al.  Effects of a Cut, Lorentz-Boosted sky on the Angular Power Spectrum , 2010, 1009.4937.

[56]  L. Amendola,et al.  Measuring our peculiar velocity on the CMB with high-multipole off-diagonal correlations , 2010, 1008.1183.

[57]  A. Kosowsky,et al.  Signature of local motion in the microwave sky. , 2010, Physical review letters.

[58]  J. Yokoyama,et al.  New cosmological constraints on primordial black holes , 2009, 0912.5297.

[59]  Luca Stringhetti,et al.  Planck-LFI: design and performance of the 4 Kelvin Reference Load Unit , 2009, 1001.4778.

[60]  D. J. Fixsen,et al.  THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.

[61]  Edward J. Wollack,et al.  THE ARCADE 2 INSTRUMENT , 2009, 0901.0546.

[62]  J. Zibin,et al.  Gauging the cosmic microwave background , 2008, 0808.2047.

[63]  S. Carroll,et al.  Superhorizon Perturbations and the Cosmic Microwave Background , 2008, 0808.1570.

[64]  A. Tartari,et al.  TRIS. II. Search for CMB Spectral Distortions at 0.60, 0.82, and 2.5 GHz , 2008, 0807.4750.

[65]  C. Burigana,et al.  CMB polarization constraints on radiative feedback , 2007, 0712.1913.

[66]  C. Burigana,et al.  CMB polarization constraints on radiative feedback , 2007, 0712.1913.

[67]  Spyros BasilakosManolis Plionis The PSCz dipole revisited , 2006, astro-ph/0609476.

[68]  S. Burles,et al.  Detecting the Aberration of the Cosmic Microwave Background , 2006, astro-ph/0601559.

[69]  O. Lahav,et al.  The dipole anisotropy of the 2 Micron All-Sky Redshift Survey , 2005, astro-ph/0507166.

[70]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[71]  R. Sunyaev,et al.  Clusters of galaxies in the microwave band: Influence of the motion of the Solar System , 2004, astro-ph/0409058.

[72]  R. Sunyaev,et al.  Superposition of blackbodies and the dipole anisotropy: A possibility to calibrate CMB experiments , 2004, astro-ph/0404067.

[73]  N. Katz,et al.  The Clustering Dipole of the Local Universe from the Two Micron All Sky Survey , 2003, astro-ph/0303592.

[74]  M. Kamionkowski,et al.  Aspects of the cosmic microwave background dipole , 2002, astro-ph/0210165.

[75]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[76]  F. V. Leeuwen,et al.  Peculiar velocity effects in high-resolution microwave background experiments , 2001, astro-ph/0112457.

[77]  Helen Valentine,et al.  The IRAS PSCz dipole , 1999 .

[78]  Princeton,et al.  Power spectrum of the Sunyaev-Zel’dovich effect , 1999, astro-ph/9912180.

[79]  Olinto,et al.  Limit on primordial small-scale magnetic fields from cosmic microwave background distortions , 1999, Physical review letters.

[80]  S. Courteau,et al.  The Solar Motion Relative to the Local Group , 1999, astro-ph/9903298.

[81]  D. J. Fixsen,et al.  Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS) , 1998, astro-ph/9810373.

[82]  M. Plionis,et al.  The X-Ray Cluster Dipole , 1998 .

[83]  C. Bennett,et al.  The Spectrum of the Extragalactic Far-Infrared Background from the COBE FIRAS Observations , 1998, astro-ph/9803021.

[84]  E. L. Wright,et al.  The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set , 1996, astro-ph/9605054.

[85]  E. Branchini,et al.  Reconstructing positions and peculiar velocities of galaxy clusters within 25,000 kilometers per second: The cluster real space dipole , 1996 .

[86]  M.Plionis,et al.  Reconstructing Positions and Peculiar Velocities of Galaxy Clusters within 20000 km/sec. I: The Cluster 3D Dipole , 1995, astro-ph/9501028.

[87]  E. Branchini,et al.  RECONSTRUCTING POSITIONS AND PECULIAR VELOCITIES OF GALAXY CLUSTERS WITHIN 20000 Km/sec , 1995, astro-ph/9504016.

[88]  J. Silk,et al.  Power spectrum constraints from spectral distortions in the cosmic microwave background , 1994, astro-ph/9402045.

[89]  Hu,et al.  Thermalization constraints and spectral distortions for massive unstable relic particles. , 1993, Physical review letters.

[90]  C. Bennett,et al.  The COBE Mission: Its Design and Performance Two Years after Launch , 1992 .

[91]  J. Huchra,et al.  A Redshift Survey of IRAS Galaxies. V. The Acceleration on the Local Group , 1992 .

[92]  J. Bartlett,et al.  A Comptonization model for the submillimeter background , 1990 .

[93]  J. Ostriker,et al.  Distortion of the cosmic background radiation by superconducting strings , 1987 .

[94]  O. Lahav,et al.  The dipole anisotropy of a new, colour-selected, IRAS galaxy sample , 1987 .

[95]  Beverly J. Smith,et al.  A redshift survey of IRAS galaxies , 1987 .

[96]  R. Fabbri Spectrum of the Sunyaev-Zel'dovich effect for high electron temperatures , 1981 .

[97]  L. Danese,et al.  Dipole anisotropy and distortions of the spectrum of the cosmic microwave background , 1981 .

[98]  Y. Zel’dovich,et al.  The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement , 1980 .

[99]  E. Wright Distortion of the microwave background by a hot intergalactic medium , 1979 .

[100]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[101]  G F Hull,et al.  THE INTERACTION OF MATTER AND RADIATION. , 1929, Science.

[102]  Christina Freytag,et al.  Radiative Processes In Astrophysics , 2016 .

[103]  D. Wiltshire Differential expansion of space and the Hubble flow anisotropy , 2016 .

[104]  A. Kosowsky,et al.  Ju l 2 01 0 The Signature of Proper Motion in the Microwave Sky , 2010 .

[105]  V. Katalinić,et al.  A Limit on Primordial Small-Scale Magnetic Fields from CMB Distortions , 1999 .

[106]  C. Burigana,et al.  Theoretical aspects of the CMB spectrum , 1994 .

[107]  G. Ellis,et al.  On the expected anisotropy of radio source counts , 1984 .

[108]  G. Zotti Distortions in the Rayleigh-Jeans Region of the Cosmic Background Radiation Spectrum , 1982 .

[109]  Y. Zel’dovich,et al.  The Effect of Energy Release on the Emission Spectrum in a Hot Universe , 1972 .

[110]  M. Forman The Compton-Getting effect for cosmic-ray particles and photons and the Lorentz- invariance of distribution functions , 1970 .

[111]  Y. Zeldovich,et al.  The interaction of matter and radiation in a hot-model universe , 1969 .