Exploring cosmic origins with CORE: Effects of observer peculiar motion
暂无分享,去创建一个
T. Kitching | H. Kurki-Suonio | J. Bartlett | M. Kunz | J. Lesgourgues | A. Melchiorri | Z. Cai | E. Hivon | A. Banday | A. Lasenby | A. Challinor | F. Bouchet | P. Ade | J. Borrill | P. Bernardis | S. Hanany | S. Masi | J. Diego | V. Poulin | S. Clesse | M. Ashdown | M. Quartin | T. Kisner | C. Martins | M. Bersanelli | A. Bonaldi | C. Burigana | L. Danese | G. Zotti | J. Delabrouille | F. Finelli | M. Liguori | B. Maffei | N. Mandolesi | P. Mazzotta | P. Natoli | D. Paoletti | G. Patanchon | M. Piat | G. Polenta | M. Remazeilles | L. Toffolatti | M. Tomasi | J. Valiviita | B. Tent | P. Vielva | N. Vittorio | S. Feeney | S. Galli | M. Lattanzi | J. Melin | N. Trappe | Will Handley | A. Pollo | N. Bartolo | J. Chluba | E. D. Valentino | M. Gerbino | J. González-Nuevo | C. Hernandez-Monteagudo | M. López-Caniego | J. Rubiño-Martín | L. Salvati | T. Trombetti | M. Bilicki | G. Pisano | A. Coppolecchia | L. Lamagna | A. Paiella | A. Tartari | M. Zannoni | G. Gasperis | K. Kiiveri | V. Lindholm | P. Cabella | D. McCarthy | A. Notari | S. Ferraro | M. Negrello | M. Bonato | C. Tucker | D. Tramonte | J. Greenslade | A. Monfardini | M. Crook | A. Lapi | V. Vennin | M. Calvo | G. Luzzi | M. Roman | S. Grandis | M. Ballardini | S. Basak | D. Contreras | R. Fernández-Cobos | D. Molinari | F. Forastieri | L. Polastri | R. Allison | J. Errard | C. Hervías-Caimapo | R. Génova-Santos | F. Boulanger | M. Bucher | R. Banerji | T. Brinckmann | A. Buzzelli | C. Carvalho | G. Castellano | I. Colantoni | S. Hagstotz | M. Hills | K. Young | R. V. D. Weijgaert | A. Achúcarro | E. Martínez-González | A. Marco | D. Scott | G. D’Alessandro | F. T. B. collaboration | Maciej Bilicki | D. Scott | D. Scott
[1] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[2] S. Masi,et al. Exploring cosmic origins with CORE: Mitigation of systematic effects , 2017, 1707.04224.
[3] P. A. R. Ade,et al. Exploring cosmic origins with CORE: Survey requirements and mission design , 2017, Journal of Cosmology and Astroparticle Physics.
[4] S. Masi,et al. Exploring cosmic origins with CORE: The instrument , 2017, 1705.02170.
[5] S. Masi,et al. Exploring cosmic origins with CORE: B-mode component separation , 2017, 1704.04501.
[6] A. V. Engelen,et al. Reconstructing the primary CMB dipole , 2017, 1704.00718.
[7] T. Kitching,et al. Exploring cosmic origins with CORE: Cluster science , 2017, 1703.10456.
[8] J. Aumont,et al. Planck intermediate results LII. Planet flux densities , 2016, 1612.07151.
[9] Peter A. R. Ade,et al. The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters , 2016, Journal of Cosmology and Astroparticle Physics.
[10] R. B. Partridge,et al. Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps , 2016, 1609.07263.
[11] Prado Mart'in-Moruno,et al. Cosmology with moving bimetric fluids , 2016, 1608.06493.
[12] G. Hilton,et al. LiteBIRD: lite satellite for the study of B-mode polarization and inflation from cosmic microwave background radiation detection , 2016, Astronomical Telescopes + Instrumentation.
[13] Jacques Delabrouille,et al. Optimal scan strategies for future CMB satellite experiments , 2016, 1604.02290.
[14] G. Zotti,et al. Another look at distortions of the Cosmic Microwave Background spectrum , 2016 .
[15] M. Quartin,et al. Interpreting the CMB aberration and Doppler measurements: boost or intrinsic dipole? , 2016, 1603.02664.
[16] J. Chluba. Which spectral distortions does ΛCDM actually predict , 2016, 1603.02496.
[17] K. Bolejko,et al. Differential cosmic expansion and the Hubble flow anisotropy , 2015, 1512.07364.
[18] G. Zotti,et al. Another look to distortions of the CMB spectrum , 2015, 1512.04816.
[19] M. Quartin,et al. CMB all-scale blackbody distortions induced by linearizing temperature , 2015, 1510.08793.
[20] D. Huterer,et al. KINEMATIC DIPOLE DETECTION WITH GALAXY SURVEYS: FORECASTS AND REQUIREMENTS , 2015, 1509.05374.
[21] Simone Ferraro,et al. Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background. , 2015, Physical review letters.
[22] J. Chluba,et al. SPECTRAL DISTORTIONS OF THE CMB DIPOLE , 2015, 1505.06028.
[23] M. Quartin,et al. Improving Planck calibration by including frequency-dependent relativistic corrections , 2015, 1504.04897.
[24] M. Quartin,et al. On the proper kinetic quadrupole CMB removal and the quadrupole anomalies , 2015, 1504.02076.
[25] G. W. Pratt,et al. Planck 2015 results Special feature Planck 2015 results VIII . High Frequency Instrument data processing : Calibration and maps , 2016 .
[26] R. B. Barreiro,et al. Planck 2015 results - XXII. A map of the thermal Sunyaev-Zeldovich effect , 2015, 1502.01596.
[27] Jean-Luc Starck,et al. Testing foundations of modern cosmology with SKA all-sky surveys , 2015, 1501.03820.
[28] J. Chluba,et al. New operator approach to the CMB aberration kernels in harmonic space , 2014, 1403.6117.
[29] A. Dolgov,et al. CMB constraints on mass and coupling constant of light pseudoscalar particles , 2013, 1312.3558.
[30] C. Burigana,et al. Semi-analytical description of clumping factor and cosmic microwave background free–free distortions from reionization , 2013, 1310.6177.
[31] M. Kamionkowski,et al. Effect of aberration on partial-sky measurements of the cosmic microwave background temperature power spectrum , 2013, 1309.2285.
[32] P. Tiwari,et al. Dipole anisotropy in integrated linearly polarized flux density in NVSS data , 2013, 1308.3970.
[33] A. Loeb,et al. Constraining primordial black-hole bombs through spectral distortions of the cosmic microwave background , 2013, 1307.5176.
[34] P. Tiwari,et al. Dipole anisotropy in sky brightness and source count distribution in radio NVSS data , 2013, 1307.1947.
[35] J. Chluba. Distinguishing different scenarios of early energy release with spectral distortions of the cosmic microwave background , 2013, 1304.6121.
[36] C. A. Oxborrow,et al. Planck 2015 results. I. Overview of products and scientific results , 2015 .
[37] R. B. Barreiro,et al. Planck 2013 results. V. LFI calibration , 2013, 1303.5066.
[38] C. A. Oxborrow,et al. Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove , 2013, 1303.5087.
[39] J. Aumont,et al. Planck2018 results , 2013, Astronomy & Astrophysics.
[40] Z. Cai,et al. A HYBRID MODEL FOR THE EVOLUTION OF GALAXIES AND ACTIVE GALACTIC NUCLEI IN THE INFRARED , 2013, 1303.2335.
[41] R. Sunyaev,et al. Unavoidable CMB spectral features and blackbody photosphere of our universe , 2013, 1302.6553.
[42] D. Schwarz,et al. Cosmic radio dipole from NVSS and WENSS , 2013, 1301.5559.
[43] R. Schonrich. Galactic Rotation and Solar Motion from Stellar Kinematics , 2012, 1207.3079.
[44] D. Huterer,et al. Dipoles in the sky , 2012, 1205.6476.
[45] J. Chluba,et al. PROBING THE INFLATON: SMALL-SCALE POWER SPECTRUM CONSTRAINTS FROM MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND ENERGY SPECTRUM , 2012, 1203.2681.
[46] Jens Chluba,et al. CMB at 2 × 2 order: the dissipation of primordial acoustic waves and the observable part of the associated energy release , 2012, 1202.0057.
[47] R. Watkins,et al. Hubble flow variance and the cosmic rest frame , 2012, 1201.5371.
[48] M. Quartin,et al. Measuring our peculiar velocity by ``pre-deboosting'' the CMB , 2011, 1112.1400.
[49] R. Sunyaev,et al. The evolution of CMB spectral distortions in the early Universe , 2011, 1109.6552.
[50] Edward J. Wollack,et al. INTERPRETATION OF THE ARCADE 2 ABSOLUTE SKY BRIGHTNESS MEASUREMENT , 2011 .
[51] M. Halpern,et al. The Primordial Inflation Explorer (PIXIE): a nulling polarimeter for cosmic microwave background observations , 2011, 1105.2044.
[52] A. Kashlinsky,et al. PROBING THE UNIVERSE'S TILT WITH THE COSMIC INFRARED BACKGROUND DIPOLE , 2011, 1104.0901.
[53] G. Mamon,et al. Is the 2MASS clustering dipole convergent , 2011, 1102.4356.
[54] J. Chluba. Aberrating the CMB sky: fast and accurate computation of the aberration kernel , 2011, 1102.3415.
[55] G. Starkman,et al. Effects of a Cut, Lorentz-Boosted sky on the Angular Power Spectrum , 2010, 1009.4937.
[56] L. Amendola,et al. Measuring our peculiar velocity on the CMB with high-multipole off-diagonal correlations , 2010, 1008.1183.
[57] A. Kosowsky,et al. Signature of local motion in the microwave sky. , 2010, Physical review letters.
[58] J. Yokoyama,et al. New cosmological constraints on primordial black holes , 2009, 0912.5297.
[59] Luca Stringhetti,et al. Planck-LFI: design and performance of the 4 Kelvin Reference Load Unit , 2009, 1001.4778.
[60] D. J. Fixsen,et al. THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.
[61] Edward J. Wollack,et al. THE ARCADE 2 INSTRUMENT , 2009, 0901.0546.
[62] J. Zibin,et al. Gauging the cosmic microwave background , 2008, 0808.2047.
[63] S. Carroll,et al. Superhorizon Perturbations and the Cosmic Microwave Background , 2008, 0808.1570.
[64] A. Tartari,et al. TRIS. II. Search for CMB Spectral Distortions at 0.60, 0.82, and 2.5 GHz , 2008, 0807.4750.
[65] C. Burigana,et al. CMB polarization constraints on radiative feedback , 2007, 0712.1913.
[66] C. Burigana,et al. CMB polarization constraints on radiative feedback , 2007, 0712.1913.
[67] Spyros BasilakosManolis Plionis. The PSCz dipole revisited , 2006, astro-ph/0609476.
[68] S. Burles,et al. Detecting the Aberration of the Cosmic Microwave Background , 2006, astro-ph/0601559.
[69] O. Lahav,et al. The dipole anisotropy of the 2 Micron All-Sky Redshift Survey , 2005, astro-ph/0507166.
[70] K. Gorski,et al. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.
[71] R. Sunyaev,et al. Clusters of galaxies in the microwave band: Influence of the motion of the Solar System , 2004, astro-ph/0409058.
[72] R. Sunyaev,et al. Superposition of blackbodies and the dipole anisotropy: A possibility to calibrate CMB experiments , 2004, astro-ph/0404067.
[73] N. Katz,et al. The Clustering Dipole of the Local Universe from the Two Micron All Sky Survey , 2003, astro-ph/0303592.
[74] M. Kamionkowski,et al. Aspects of the cosmic microwave background dipole , 2002, astro-ph/0210165.
[75] A. Lewis,et al. Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.
[76] F. V. Leeuwen,et al. Peculiar velocity effects in high-resolution microwave background experiments , 2001, astro-ph/0112457.
[77] Helen Valentine,et al. The IRAS PSCz dipole , 1999 .
[78] Princeton,et al. Power spectrum of the Sunyaev-Zel’dovich effect , 1999, astro-ph/9912180.
[79] Olinto,et al. Limit on primordial small-scale magnetic fields from cosmic microwave background distortions , 1999, Physical review letters.
[80] S. Courteau,et al. The Solar Motion Relative to the Local Group , 1999, astro-ph/9903298.
[81] D. J. Fixsen,et al. Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS) , 1998, astro-ph/9810373.
[82] M. Plionis,et al. The X-Ray Cluster Dipole , 1998 .
[83] C. Bennett,et al. The Spectrum of the Extragalactic Far-Infrared Background from the COBE FIRAS Observations , 1998, astro-ph/9803021.
[84] E. L. Wright,et al. The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set , 1996, astro-ph/9605054.
[85] E. Branchini,et al. Reconstructing positions and peculiar velocities of galaxy clusters within 25,000 kilometers per second: The cluster real space dipole , 1996 .
[86] M.Plionis,et al. Reconstructing Positions and Peculiar Velocities of Galaxy Clusters within 20000 km/sec. I: The Cluster 3D Dipole , 1995, astro-ph/9501028.
[87] E. Branchini,et al. RECONSTRUCTING POSITIONS AND PECULIAR VELOCITIES OF GALAXY CLUSTERS WITHIN 20000 Km/sec , 1995, astro-ph/9504016.
[88] J. Silk,et al. Power spectrum constraints from spectral distortions in the cosmic microwave background , 1994, astro-ph/9402045.
[89] Hu,et al. Thermalization constraints and spectral distortions for massive unstable relic particles. , 1993, Physical review letters.
[90] C. Bennett,et al. The COBE Mission: Its Design and Performance Two Years after Launch , 1992 .
[91] J. Huchra,et al. A Redshift Survey of IRAS Galaxies. V. The Acceleration on the Local Group , 1992 .
[92] J. Bartlett,et al. A Comptonization model for the submillimeter background , 1990 .
[93] J. Ostriker,et al. Distortion of the cosmic background radiation by superconducting strings , 1987 .
[94] O. Lahav,et al. The dipole anisotropy of a new, colour-selected, IRAS galaxy sample , 1987 .
[95] Beverly J. Smith,et al. A redshift survey of IRAS galaxies , 1987 .
[96] R. Fabbri. Spectrum of the Sunyaev-Zel'dovich effect for high electron temperatures , 1981 .
[97] L. Danese,et al. Dipole anisotropy and distortions of the spectrum of the cosmic microwave background , 1981 .
[98] Y. Zel’dovich,et al. The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement , 1980 .
[99] E. Wright. Distortion of the microwave background by a hot intergalactic medium , 1979 .
[100] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[101] G F Hull,et al. THE INTERACTION OF MATTER AND RADIATION. , 1929, Science.
[102] Christina Freytag,et al. Radiative Processes In Astrophysics , 2016 .
[103] D. Wiltshire. Differential expansion of space and the Hubble flow anisotropy , 2016 .
[104] A. Kosowsky,et al. Ju l 2 01 0 The Signature of Proper Motion in the Microwave Sky , 2010 .
[105] V. Katalinić,et al. A Limit on Primordial Small-Scale Magnetic Fields from CMB Distortions , 1999 .
[106] C. Burigana,et al. Theoretical aspects of the CMB spectrum , 1994 .
[107] G. Ellis,et al. On the expected anisotropy of radio source counts , 1984 .
[108] G. Zotti. Distortions in the Rayleigh-Jeans Region of the Cosmic Background Radiation Spectrum , 1982 .
[109] Y. Zel’dovich,et al. The Effect of Energy Release on the Emission Spectrum in a Hot Universe , 1972 .
[110] M. Forman. The Compton-Getting effect for cosmic-ray particles and photons and the Lorentz- invariance of distribution functions , 1970 .
[111] Y. Zeldovich,et al. The interaction of matter and radiation in a hot-model universe , 1969 .