Chapter 6 – GaSb/lnAs supperlattices for infrared FPAs

Publisher Summary Type-II heterojunctions have been found in many applications of electronic devices such as resonant tunneling diodes (RTD) and hot electron transistors. However, perhaps their most important applications are in optoelectronics, and many significant results have been achieved from type-II modulators, detectors, and laser diodes. The band alignment of any heterojunction can be categorized as type-I, type-II staggered, or type-II misaligned. The special band alignment of the type-II heterojunctions provides three important features, which are used in various devices to improve the overall performance of the device. The first feature is that a superlattice with the type-II band structure can have a lower effective bandgap than the bandgap of each layer. The second feature is the spatial separation of the electrons and holes in a type-II heterojunction. The third feature is the zener-type tunneling in a type-II misaligned heterojunction. The active layers of photovoltaic and photoconductive type-II detectors are made from superlattices with a type-II band alignment.

[1]  Martin,et al.  Theoretical study of band offsets at semiconductor interfaces. , 1987, Physical review. B, Condensed matter.

[2]  Manijeh Razeghi,et al.  High-temperature continuous-wave operation of ?~8 m quantum cascade lasers , 1999 .

[3]  Pavlov,et al.  Effect of interfacial bonding on the structural and vibrational properties of InAs/GaSb superlattices. , 1996, Physical review. B, Condensed matter.

[4]  H. Ehrenreich,et al.  Auger lifetimes in ideal InGaSb/InAs superlattices , 1993 .

[5]  Hooman Mohseni,et al.  High-performance InAs/GaSb superlattice photodiodes for the very long wavelength infrared range , 2001 .

[6]  I. Vurgaftman,et al.  High-temperature 4.5-/spl mu/m type-II quantum-well laser with Auger suppression , 1997, IEEE Photonics Technology Letters.

[7]  Martin Walther,et al.  High performance InAs/Ga1-xInxSb superlattice infrared photodiodes , 1997 .

[8]  C. T. Elliott,et al.  1/f noise studies in uncooled narrow gap Hg1−xCdxTe non-equilibrium diodes , 1997 .

[9]  S. Tobin,et al.  Composition and thickness control of thin LPE HgCdTe layers using x-ray diffraction , 2000 .

[10]  Leroy L. Chang,et al.  Optical absorption of In1−xGaxAsGaSb1−yAsy superlattices , 1978 .

[11]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[12]  James A. Finch,et al.  Sensitivity improvements in uncooled microbolometer FPAs , 1999, Defense, Security, and Sensing.

[13]  Jerry R. Meyer,et al.  AUGER LIFETIME ENHANCEMENT IN INAS-GA1-XINXSB SUPERLATTICES , 1994 .

[14]  Joel N. Schulman,et al.  Type II superlattices for infrared detectors and devices , 1991 .

[15]  Hooman Mohseni,et al.  Interface-induced suppression of the Auger recombination in type-II InAs/GaSb superlattices , 1998 .

[16]  Antoni Rogalski Assessment of HgCdTe photodiodes and quantum well infrared photoconductors for long wavelength focal plane arrays , 1999 .

[17]  Martin Walther,et al.  InAs/Ga1-xInxSb infrared superlattice photodiodes for infrared detection , 1998, Photonics West.

[18]  Hooman Mohseni,et al.  Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector , 1998 .

[19]  G. Bastard,et al.  Theoretical investigations of superlattice band structure in the envelope-function approximation , 1982 .

[20]  Joel N. Schulman,et al.  Advantages of the HgTe‐CdTe superlattice as an infrared detector material , 1983 .

[21]  Jozef Piotrowski,et al.  Near room-temperature IR photo-detectors , 1991 .

[22]  Rui Q. Yang,et al.  Mid-infrared interband cascade lasers with quantum efficiencies >200% , 1998 .

[23]  M. Razeghi,et al.  Long-wavelength type-II photodiodes operating at room temperature , 2001, IEEE Photonics Technology Letters.

[24]  David H. Chow,et al.  Recent advances in Ga1−xInxSb/InAs superlattice IR detector materials , 1998 .

[25]  Christian Mailhiot,et al.  Long‐wavelength infrared detectors based on strained InAs–Ga1−xInxSb type‐II superlattices , 1989 .

[26]  Rui Q. Yang,et al.  Type-II interband quantum cascade laser at 3.8 /spl mu/m , 1997 .

[27]  Hooman Mohseni,et al.  Uncooled InAs-GaSb type-II infrared detectors grown on GaAs substrates for the 8-12-/spl mu/m atmospheric window , 1999 .

[28]  Noise performance of bound‐to‐miniband transition III‐V quantum‐well infrared photodetectors , 1995 .

[29]  C. T. Elliott,et al.  A high-performance CO2 laser heterodyne detector operating at 250 K , 1998 .

[30]  Leo Esaki,et al.  InAs-GaSb superlattice energy structure and its semiconductor-semimetal transition , 1978 .

[31]  Georgy G. Zegrya,et al.  Mechanism of suppression of Auger recombination processes in type-II heterostructures , 1995 .

[32]  Arthur C. Gossard,et al.  Electrical and optical properties of infrared photodiodes using the InAs/Ga1−xInxSb superlattice in heterojunctions with GaSb , 1996 .

[33]  Hooman Mohseni,et al.  Very long wavelength infrared type-II detectors operating at 80 K , 2000 .

[34]  W. I. Wang,et al.  Infrared electroabsorption modulation at normal incidence in asymmetrically stepped AlSb/InAs/GaSb/AlSb quantum wells , 1994 .

[35]  Darryl L. Smith,et al.  Proposal for strained type II superlattice infrared detectors , 1987 .