Cr, Co and rare earth elements systematics in ice-rafted sediments of northern part of the Beaufort gyre

The results of analysis of the systematics of Cr, Co and rare earth elements (REE) in ice-rafted sediments (IRS) of the northern part of the Beaufort Cycle (�rctic Ocean) are considered in the article. The IRS was assembled on the �R�-�I�-1�a cruise of the NIS Polarstern in 1���. The exact position of the sources of the IRS present in the ice has not been established to date. This is due, on the one hand, to the complex ice cycle in the �rctic Basin, on the other – a relatively small amount of data on the actual composition of the IRS. �ccording to the views of most researchers, the main IRS supplier is the wide and shallow Siberian �rctic shelf. In the Beaufort Sea, the distinctive features of which are a much narrower shelf and almost constant presence of ice in the summer period, the conditions for the formation IRS of material borrowed on the shelf of the eastern Laptev Sea. In the Co–Cr diagram, there is no overlapping of the fields of the compositions of the present bottom sediments of the estuary of Yenisei River, on the one hand, and the eastern part of the East Siberian and Chukchi seas, on the other. �lthough the sediments of the delta of the Mackenzie River, comparable to the precipitation of the estuary of the Yenisei River. by the content of Cr and differ from them by a noticeably lower content of Co. In the Cr–La diagram, the IRS field occupies an essentially isolated position, yet still has a certain overlap with the precipitation fields of the Chukchi Sea and the delta of Mackenzie River. In the diagram (La�Yb) N –La�Co, the field of IRS composition has a ≈50% overlap with the field of the present bottom sediments composition of the Chukchi Sea. The middle point of the suspension also gravitates towards Lena River, and the point of the Canadian Shield is relatively close, as well as the points of suspension of Mackenzie and �rctic-Red rivers and P��S. Overlapping of the IRS fields and modern bottom sediments of the Ob and Yenisei estuaries, as well as the east of the East Siberian Sea, on the contrary, is not observed. The data given in the article allow us to conclude that the IRS in the area of the North Pole contains sedimentary material, borrowed both on the shelf of the Beaufort Sea and on the shelves of the eastern part of the Laptev Sea and the Chukchi Sea. �.T.

[1]  А. В. Юлин,et al.  ДОЛГОСРОЧНЫЙ ПРОГНОЗ ПЛОЩАДИ ОСТАТОЧНЫХ ЛЬДОВ В СЕНТЯБРЕ В СЕВЕРНОМ ЛЕДОВИТОМ ОКЕАНЕ , 2018 .

[2]  R. Macdonald,et al.  Spatial variations in geochemical characteristics of the modern Mackenzie Delta sedimentary system , 2015 .

[3]  A. Miroshnikov,et al.  Geochemical signature of bottom sediments in the mixing zones of Ob and Yenisei waters with Kara Sea water , 2013, Geochemistry International.

[4]  K. V. Syromyatnikov,et al.  Lithological and geochemical characteristics of recent and Quaternary sedimentation in the Arctic Ocean , 2012, Geochemistry International.

[5]  D. Dethleff,et al.  Fram Strait sea-ice sediment provinces based on silt and clay compositions identify Siberian Kara and Laptev seas as main source regions , 2010 .

[6]  J. Andrews,et al.  A comparison of Holocene sediment- and paleo-magnetic characteristics from the margins of Iceland and East Greenland , 2009, Jökull.

[7]  J. Andrews,et al.  Provenance of Quaternary glacial and glacimarine sediments along the southeast Greenland margin , 2009 .

[8]  R. Stein Arctic Ocean Sediments: Processes, Proxies, and Paleoenvironment , 2008 .

[9]  J. Andrews,et al.  Isotopic constraints on the provenance of fine-grained sediment in LGM tills from the Ross Embayment, Antarctica , 2006 .

[10]  D. Darby,et al.  Sources of sediment found in sea ice from the western Arctic Ocean, new insights into processes of entrainment and drift patterns , 2003 .

[11]  N. Pisias,et al.  Sediment source strength, transport pathways and accumulation patterns on the Siberian–Arctic's Chukchi and Laptev shelves , 2003 .

[12]  Chen Zhihua,et al.  REE geochemistry of surface sediments in the Chukchi Sea , 2003 .

[13]  T. Vorren,et al.  Provinciality of ice rafting in the North Atlantic: application of 40Ar/39Ar dating of individual ice rafted hornblende grains , 2002 .

[14]  V. Podkovyrov,et al.  The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia , 2002 .

[15]  M. Pirrung,et al.  Magnetic susceptibility and ice-rafted debris in surface sediments of the Nordic Seas: implications for Isotope Stage 3 oscillations , 2002 .

[16]  Scott M. McLennan,et al.  Relationships between the trace element composition of sedimentary rocks and upper continental crust , 2001 .

[17]  R. L. Cullers The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA : implications for provenance and metamorphic studies , 2000 .

[18]  B. Dupré,et al.  Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? , 1999 .

[19]  A. Gow,et al.  Evidence for radionuclide transport by sea ice , 1997 .

[20]  H. Kassens,et al.  Sea-ice processes in the Laptev Sea and their importance for sediment export , 1997 .

[21]  R. Stein,et al.  Terrigenous sediment supply into the Arctic Ocean: Heavy-mineral distribution in the Laptev Sea , 1996 .

[22]  A. Alabyan,et al.  SEDIMENT TRANSPORT TO THE LAPTEV SEA - HYDROLOGY AND GEOCHEMISTRY OF THE LENA RIVER , 1996 .

[23]  H. Kassens,et al.  Sediments in Arctic sea ice: Implications for entrainment, transport and release , 1994 .

[24]  Dirk Nürnberg,et al.  Contrasts in Arctic shelf sea-ice regimes and some implications: Beaufort Sea versus Laptev Sea , 1994 .

[25]  K. Condie Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales , 1993 .

[26]  P. Arlien‐Søborg,et al.  Science of the Total Environment , 2018 .

[27]  G. Pattenden,et al.  An Estimate of the Chemical Composition of the Canadian Precambrian Shield , 1967 .

[28]  G. Zanor,et al.  Geochemistry and depositional environment of the Losero Formation in the Mesa Central, México , 2014 .

[29]  Эн. Э. Асадулин,et al.  Геохимическая специализация донных осадков в зонах смешения вод Оби и Енисея с водами Карского моря , 2013 .

[30]  А. С. Астахов,et al.  Литохимические индикаторы современных геодинамических процессов в Чукотском море , 2013 .

[31]  Е. А. Гусев Некоторые особенности геологического строения Гренландско-Шпицбергенского плато (Северный Ледовитый океан) , 2013 .

[32]  А. С. Астахов,et al.  Литохимическая типизация обстановок полярного осадконакопления (Чукотское море) методами многокомпонентного статистического анализа , 2013 .

[33]  A. P. Lisitzin,et al.  Marine ice-rafting as a new type of sedimentogenesis in the Arctic and novel approaches to studying sedimentary processes , 2010 .

[34]  В. П. Шевченко,et al.  Распределение и состав взвеси в озерах Кенозерского национального парка (Архангельская область) , 2009 .

[35]  V. Rachold,et al.  Geochemistry of the Ob and Yenisey estuaries: A comparative study , 2007 .

[36]  B. Dupré,et al.  Chemical composition of suspended material in large rivers of Russia and adjacent countries , 2004 .

[37]  В. С. Савенко,et al.  Химический состав взвешенного вещества крупных рек России и сопредельных стран , 2004 .

[38]  Aleksandr Petrovich Lisit︠s︡yn Sea-ice and iceberg sedimentation in the ocean : recent and past , 2002 .

[39]  J. Andrews,et al.  Geological history of the polar oceans : Arctic versus Antarctic , 1990 .

[40]  R. Keays,et al.  Additional estimates of continental surface Precambrian shield composition in Canada , 1976 .