Low-cycle fatigue model of damage accumulation – The strain approach

Abstract The paper presents a model of damage accumulation designed to analyse fatigue life of structural elements exploited in multiaxial, non-proportional, low-cycle loading conditions. The discussed approach consists of two calculation blocs. In the first bloc the components of stress and strain tensor are determined. This module, in which Mroz’s multisurface model was used, contains constitutive relations and the law of kinematic hardening. The second bloc contains the dependencies which determine the growth of anisotropic measure of damage accumulation (associated with the physical plane) and crack initiation criterion. The growth of the damage accumulation measure was associated with the loading damage accumulation function and the increment of non-dilatational plastic strain on the physical plane. It was assumed that crack initiation occurs when stress or a measure of damage accumulation on any physical plane reaches critical values.

[1]  G. Pluvinage,et al.  Biaxial low cycle fatigue under non-proportional loading of a magnesium-lithium alloy , 1996 .

[2]  H. Nowack,et al.  Further evaluation of the advanced prediction method EVICD for arbitrary multiaxial loading , 2003 .

[3]  T. Bogetti,et al.  Low-cycle fatigue of unidirectional composites:: Bi-linear S–N curves , 2002 .

[4]  Chun H. Wang,et al.  Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue—Part 1: Theories , 1996 .

[5]  A. Karolczuk,et al.  Selection of the critical plane orientation in two-parameter multiaxial fatigue failure criterion under combined bending and torsion , 2008 .

[6]  Xu Chen,et al.  Evaluation of multiaxial fatigue criteria under irregular loading , 2002 .

[7]  S. Kalnaus,et al.  Fatigue life prediction of copper single crystals using a critical plane approach , 2006 .

[8]  Hongchun Shang,et al.  Low cycle fatigue stress-strain relation model of cyclic hardening or cyclic softening materials , 1996 .

[9]  I. V. Papadopoulos,et al.  Long life fatigue under multiaxial loading , 2001 .

[10]  Chao Yu Hung,et al.  Fatigue life estimation under multiaxial loadings , 1999 .

[11]  Anthony R. Ingraffea,et al.  Process zone size effects on naturally curving cracks , 2001 .

[12]  Darrell F. Socie,et al.  Multiaxial Fatigue: Analysis and Experiments , 1989 .

[13]  Mingwen Jiang,et al.  A damaged evolution model for strain fatigue of ductile metals , 1995 .

[14]  K. N. Smith A Stress-Strain Function for the Fatigue of Metals , 1970 .

[15]  A. Varvani-Farahani,et al.  A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions , 2000 .

[16]  Xu Chen,et al.  A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading , 1999 .

[17]  Y. Garud A New Approach to the Evaluation of Fatigue Under Multiaxial Loadings , 1981 .

[18]  Bert Sluys,et al.  Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces , 2000 .

[19]  Grzegorz Glinka,et al.  A MULTIAXIAL FATIGUE STRAIN ENERGY DENSITY PARAMETER RELATED TO THE CRITICAL FRACTURE PLANE , 1995 .

[20]  Georges Cailletaud,et al.  Multiaxial fatigue and design , 1996 .

[21]  David L. McDowell,et al.  Microstructure-based fatigue modeling of cast A356-T6 alloy , 2003 .

[22]  Andrzej Seweryn,et al.  Damage accumulation model for low cycle fatigue , 2008 .