A Bayesian inference approach to identify a Robin coefficient in one-dimensional parabolic problems

This paper investigates a nonlinear inverse problem associated with the heat conduction problem of identifying a Robin coefficient from boundary temperature measurement. A Bayesian inference approach is presented for the solution of this problem. The prior modeling is achieved via the Markov random field (MRF). The use of a hierarchical Bayesian method for automatic selection of the regularization parameter in the function estimation inverse problem is discussed. The Markov chain Monte Carlo (MCMC) algorithm is used to explore the posterior state space. Numerical results indicate that MRF provides an effective prior regularization, and the Bayesian inference approach can provide accurate estimates as well as uncertainty quantification to the solution of the inverse problem.

[1]  Alberto Malinverno,et al.  Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes , 2004 .

[2]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[3]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[4]  Bangti Jin,et al.  A Bayesian inference approach to the ill‐posed Cauchy problem of steady‐state heat conduction , 2008 .

[5]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[6]  Nicholas Zabaras,et al.  Hierarchical Bayesian models for inverse problems in heat conduction , 2005 .

[7]  Marián Slodicka,et al.  Determination of a time-dependent heat transfer coefficient from non-standard boundary measurements , 2009, Math. Comput. Simul..

[8]  James V. Beck,et al.  Investigation of transient heat transfer coefficients in quenching experiments , 1990 .

[9]  Aleksey V. Nenarokomov,et al.  Uncertainties in parameter estimation: the inverse problem , 1995 .

[10]  Harish P. Cherukuri,et al.  A non‐iterative finite element method for inverse heat conduction problems , 2003 .

[11]  Somchart Chantasiriwan,et al.  Inverse heat conduction problem of determining time-dependent heat transfer coefficient , 1999 .

[12]  B. Blackwell,et al.  Inverse Heat Conduction: Ill-Posed Problems , 1985 .

[13]  Han-Taw Chen,et al.  Investigation of heat transfer coefficient in two‐dimensional transient inverse heat conduction problems using the hybrid inverse scheme , 2008 .

[14]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  William W.-G. Yeh,et al.  A stochastic inverse solution for transient groundwater flow: Parameter identification and reliability analysis , 1992 .

[16]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[17]  Chakravarthy Balaji,et al.  Estimation of parameters in multi-mode heat transfer problems using Bayesian inference : Effect of noise and a priori , 2008 .

[18]  Nicholas Zabaras,et al.  A Bayesian inference approach to the inverse heat conduction problem , 2004 .

[19]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[20]  Bangti Jin,et al.  Fast Bayesian approach for parameter estimation , 2008 .

[21]  Roger Van Keer,et al.  Recovery of the convective transfer coefficient in parabolic problems from a non-standard boundary condition , 2000 .

[22]  Roger Van Keer,et al.  Determination of a Robin coefficient in semilinear parabolic problems by means of boundary measurements , 2002 .

[23]  N. Zabaras,et al.  Stochastic inverse heat conduction using a spectral approach , 2004 .

[24]  Bangti Jin,et al.  Inversion of Robin coefficient by a spectral stochastic finite element approach , 2008, J. Comput. Phys..

[25]  D. S. Sivia,et al.  Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.

[26]  Derek B. Ingham,et al.  Reconstruction of heat transfer coefficients using the boundary element method , 2008, Comput. Math. Appl..

[27]  Ting Wei,et al.  The identification of a Robin coefficient by a conjugate gradient method , 2009 .

[28]  E. Somersalo,et al.  Statistical inverse problems: discretization, model reduction and inverse crimes , 2007 .

[29]  James E. Gentle,et al.  Elements of computational statistics , 2002 .

[30]  O. Alifanov Inverse heat transfer problems , 1994 .

[31]  Tahar Loulou,et al.  Estimations of a 2D convection heat transfer coefficient during a metallurgical “Jominy end-quench” test: comparison between two methods and experimental validation , 2004 .