Unique reconstruction of band-limited signals by a Mallat-Zhong wavelet transform algorithm

We show that uniqueness and existence for signal reconstruction from multiscale edges in the Mallat and Zhong algorithm become possible if we restrict our signals to Paley-Wiener space, band-limit our wavelets, and irregularly sample at the wavelet transform (absolute) maxima—the edges—while possibly including (enough) extra points at each level. We do this in a setting that closely resembles the numerical analysis setting of Mallat and Zhong and that seems to capture something of the essence of their (practical) reconstruction method. Our work builds on a uniqueness result for reconstructing an L2 signal from irregular sampling of its wavelet transform of Gröchenig and the related work of Benedetto, Heller, Mallat, and Zhong. We show that the rate of convergence for this reconstruction algorithm is geometric and computable in advance. Finally, we consider the effect on the rate of convergence of not sampling enough local maxima.

[1]  Edmund Taylor Whittaker XVIII.—On the Functions which are represented by the Expansions of the Interpolation-Theory , 1915 .

[2]  N. Wiener,et al.  Fourier Transforms in the Complex Domain , 1934 .

[3]  G. Pólya,et al.  Fonctions entières et intégrales de fourier multiples , 1936 .

[4]  John von Neumann,et al.  Functional Operators (AM-21), Volume 1: Measures and Integrals. (AM-21) , 1950 .

[5]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[6]  W. Rudin Real and complex analysis , 1968 .

[7]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[8]  B. Logan Information in the zero crossings of bandpass signals , 1977, The Bell System Technical Journal.

[9]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[10]  D. Youla,et al.  Image Restoration by the Method of Convex Projections: Part 1ߞTheory , 1982, IEEE Transactions on Medical Imaging.

[11]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[12]  Y. Meyer Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs , 1986 .

[13]  D. C. Champeney A handbook of Fourier theorems , 1987 .

[14]  Norman E. Hurt,et al.  Phase Retrieval and Zero Crossings , 1989 .

[15]  R. Marks Introduction to Shannon Sampling and Interpolation Theory , 1990 .

[16]  J. Benedetto,et al.  Irregular sampling and the theory of frames, I , 1990 .

[17]  Z. Berman The Uniqueness Question of Discrete Wavelet Maxima Representation , 1991 .

[18]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[19]  K. Gröchenig RECONSTRUCTION ALGORITHMS IN IRREGULAR SAMPLING , 1992 .

[20]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[21]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Heinz H. Bauschke,et al.  On the convergence of von Neumann's alternating projection algorithm for two sets , 1993 .

[23]  John S. Baras,et al.  Properties of the multiscale maxima and zero-crossings representations , 1993, IEEE Trans. Signal Process..

[24]  J. Benedetto Irregular sampling and frames , 1993 .

[25]  K. Gröchenig Irregular sampling of wavelet and short-time Fourier transforms , 1993 .

[26]  B. Torrésani,et al.  Wavelets: Mathematics and Applications , 1994 .

[27]  A. Enis Çetin,et al.  Signal recovery from wavelet transform maxima , 1994, IEEE Trans. Signal Process..

[28]  A. Habibi,et al.  Introduction to wavelets , 1995, Proceedings of MILCOM '95.