On the interpretation of spectral-energy correlations in long gamma-ray bursts

Context. Recently, Liang & Zhang found a tight correlation involving only observable quantities, namely the isotropic emitted energy $E_{\rm \gamma, iso}$, the energy of the peak of the prompt spectrum $E^\prime_{\rm p}$, and the jet break time $t^\prime_{\rm j}$ of Gamma Ray Bursts. This phenomenological correlation can have a first explanation in the framework of jetted fireballs, whose semiaperture angle $\theta_{\rm j}$ is measured by the jet break time $t^\prime_{\rm j}$. By correcting E \gamma, iso for the angle $\theta_{\rm j}$ one obtains the so-called Ghirlanda correlation, linking the collimation-corrected energy $E_\gamma$ and $E^\prime_{\rm p}$. Aims. There are two ways to derive $\theta_{\rm j}$ from $t^\prime_{\rm j}$ in the “standard” scenario, corresponding to a homogeneous or to a wind-like circumburst medium. We compute and compare the $E^\prime_{\rm p}$–$E_\gamma$ correlations derived in these two conditions and study the consistency of these model-dependent correlations with the empirical Liang & Zhang correlation. We consider the difference between the observed correlations and the ones in the comoving frame . Methods. We study 18 GRBs with firmly measured z , E peak and $t_{\rm break}$ and discuss the differences with previously published samples. We compute the correlations accounting for the errors on all the relevant quantities. Results. We show that the Ghirlanda correlation with a wind-like circumburst medium is as tight as (if not tighter) than the Ghirlanda correlation for a homogeneous medium. These two Ghirlanda correlations are both consistent with the phenomenological Liang & Zhang relation. The wind-like Ghirlanda relation, which is linear, remains linear also in the comoving frame, independently of the distribution of bulk Lorentz factors. Instead, in the homogeneous density case, one is forced to assume the existence of a strict relation between the bulk Lorentz factor and the total energy, which in turn places constraints on the radiation mechanisms of the prompt emission. The wind-like Ghirlanda correlation, being linear, corresponds to different bursts having the same number of photons.

[1]  UK,et al.  Gamma-Ray Bursts: New Rulers to Measure the Universe , 2004 .

[2]  Caltech,et al.  Spectroscopy of the Host Galaxy of the Gamma-Ray Burst 980703 , 1998, astro-ph/9808188.

[3]  G. Ghirlanda,et al.  Probing the existence of the Epeak–Eiso correlation in long gamma ray bursts , 2005 .

[4]  David Eichler,et al.  The Difference Between the Amati and Ghirlanda Relations , 2005 .

[5]  C. Guidorzi,et al.  Discovery of GRB 020405 and Its Late Red Bump , 2002, astro-ph/0208008.

[6]  M. J. Rees,et al.  Dissipative photosphere models of gamma-ray bursts and X-ray flashes , 2005 .

[7]  A. Kumar,et al.  Analytic Light Curves of Gamma-Ray Burst Afterglows: Homogeneous versus Wind External Media , 2000, astro-ph/0003246.

[8]  S. Djorgovski,et al.  The afterglow, redshift and extreme energetics of the γ-ray burst of 23 January 1999 , 1999, Nature.

[9]  J. P. U. Fynbo,et al.  Absorption systems in the spectrum of GRB 021004 , 2002, astro-ph/0210654.

[10]  Gregory Y. Prigozhin,et al.  Global Characteristics of X-Ray Flashes and X-Ray-Rich Gamma-Ray Bursts Observed by HETE-2 , 2005 .

[11]  L. Piro,et al.  The Faint Optical Afterglow and Host Galaxy of GRB 020124: Implications for the Nature of Dark Gamma-Ray Bursts , 2002, astro-ph/0207320.

[12]  I. Smail,et al.  Probing a Gamma-Ray Burst Progenitor at a Redshift of z = 2: A Comprehensive Observing Campaign of the Afterglow of GRB 030226 , 2004, astro-ph/0408041.

[13]  Ryo Yamazaki,et al.  Peak energy-isotropic energy relation in the off-axis gamma-ray burst model , 2004 .

[14]  E. Berger,et al.  A common origin for cosmic explosions inferred from calorimetry of GRB030329 , 2003, Nature.

[15]  A. Klotz,et al.  Early re-brightening of the afterglow of GRB 050525a , 2005 .

[16]  Brian McLeod,et al.  GRB 021211 as a Faint Analog of GRB 990123: Exploring the Similarities and Differences in the Optical Afterglows , 2004, astro-ph/0405062.

[17]  J. G. Jernigan,et al.  Global characteristics of X-ray flashes and X-ray rich GRBs observed by HETE-2 , 2004, astro-ph/0409128.

[18]  Zhi-Yun Li,et al.  Wind Interaction Models for Gamma-Ray Burst Afterglows: The Case for Two Types of Progenitors , 1999, astro-ph/9908272.

[19]  S. R. Kulkarni,et al.  The Afterglow and the Host Galaxy of the Dark Burst GRB 970828 , 2001, astro-ph/0107539.

[20]  D. Eichler,et al.  An Interpretation of the hνpeak-Eiso Correlation for Gamma-Ray Bursts , 2004, astro-ph/0405014.

[21]  J.-L. Atteia,et al.  HETE Observations of the Gamma-Ray Burst GRB 030329: Evidence for an Underlying Soft X-Ray Component , 2004, astro-ph/0401311.

[22]  M. Feroci,et al.  Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts , 2002, astro-ph/0205230.

[23]  A. Panaitescu,et al.  Fundamental Physical Parameters of Collimated Gamma-Ray Burst Afterglows , 2001 .

[24]  S. R. Kulkarni,et al.  BEAMING IN GAMMA-RAY BURSTS: EVIDENCE FOR A STANDARD ENERGY RESERVOIR , 2001 .

[25]  A. Z. Bonanos,et al.  Deep Photometry of GRB 041006 Afterglow: Hypernova Bump at Redshift z = 0.716* , 2005 .

[26]  S. R. Kulkarni,et al.  Gamma-Ray Burst Energetics and the Gamma-Ray Burst Hubble Diagram: Promises and Limitations , 2003 .

[27]  D. Frail,et al.  Accurate Calorimetry of GRB 030329 , 2004, astro-ph/0408002.

[28]  P. Jakobsson,et al.  The Jet and the Supernova in GRB 990712 , 2001, astro-ph/0104174.

[29]  T. Piran,et al.  Energetics of Gamma-Ray Bursts , 2001, astro-ph/0103258.

[30]  S. R. Kulkarni,et al.  Optical Spectropolarimetry of the GRB 020813 Afterglow , 2002, astro-ph/0212554.

[31]  Tsvi Piran,et al.  Jets in Gamma-Ray Bursts , 1999 .

[32]  H. Nicklas,et al.  VLT Spectroscopy of GRB 990510 and GRB 990712: Probing the Faint and Bright Ends of the Gamma-Ray Burst Host Galaxy Population , 2000, astro-ph/0009025.

[33]  J. Atteia,et al.  A simple empirical redshift indicator for gamma-ray bursts , 2003, astro-ph/0304327.

[34]  Italy.,et al.  A new method optimized to use gamma-ray bursts as cosmic rulers , 2005, astro-ph/0501395.

[35]  J. P. U. Fynbo,et al.  The line-of-sight towards GRB 030429 at z =2.66: Probing the matter at stellar, galactic and intergalactic scales , 2004, astro-ph/0407439.

[36]  A. Panaitescu,et al.  Properties of Relativistic Jets in Gamma-Ray Burst Afterglows , 2001, astro-ph/0109124.

[37]  E. Rol,et al.  Very High Column Density and Small Reddening toward GRB 020124 at z = 3.20 , 2003, astro-ph/0307331.

[38]  S. Djorgovski,et al.  The afterglow, the redshift, and the extreme energetics of the gamma-ray burst 990123 , 1999, astro-ph/9902272.

[39]  G. Ghirlanda,et al.  The Collimation-corrected Gamma-Ray Burst Energies Correlate with the Peak Energy of Their νFν Spectrum , 2004, astro-ph/0405602.

[40]  E. Ramirez-Ruiz,et al.  Was GRB 990123 a unique optical flash , 2001, astro-ph/0110519.

[41]  D. Fugazza,et al.  Evidence for supernova signatures in the spectrum of the late-time bump of the optical afterglow of GRB 021211 , 2003, astro-ph/0306298.

[42]  J. G. Jernigan,et al.  Spectral analysis of 35 GRBs/XRFs observed with HETE-2/FREGATE , 2002 .

[43]  J.-L. Atteia,et al.  HETE-2 Observation of Two Gamma-Ray Bursts at z > 3 , 2005, astro-ph/0502494.

[44]  S. B. Pandey,et al.  The afterglow and the host galaxy of GRB 011211 , 2003 .

[45]  Ryo Yamazaki,et al.  Ep-Eiso Correlation in a Multiple Subjet Model of Gamma-Ray Bursts , 2005 .

[46]  Javier Gorosabel,et al.  Optical Photometry of GRB 021004: The First Month , 2003 .

[47]  L Piro,et al.  Discovery of a transient absorption edge in the X-ray spectrum of GRB 990705. , 2000, Science.