Face Patch Resting State Networks Link Face Processing to Social Cognition

Faces transmit a wealth of social information. How this information is exchanged between face-processing centers and brain areas supporting social cognition remains largely unclear. Here we identify these routes using resting state functional magnetic resonance imaging in macaque monkeys. We find that face areas functionally connect to specific regions within frontal, temporal, and parietal cortices, as well as subcortical structures supporting emotive, mnemonic, and cognitive functions. This establishes the existence of an extended face-recognition system in the macaque. Furthermore, the face patch resting state networks and the default mode network in monkeys show a pattern of overlap akin to that between the social brain and the default mode network in humans: this overlap specifically includes the posterior superior temporal sulcus, medial parietal, and dorsomedial prefrontal cortex, areas supporting high-level social cognition in humans. Together, these results reveal the embedding of face areas into larger brain networks and suggest that the resting state networks of the face patch system offer a new, easily accessible venue into the functional organization of the social brain and into the evolution of possibly uniquely human social skills.

[1]  Ravi S. Menon,et al.  Isoflurane induces dose‐dependent alterations in the cortical connectivity profiles and dynamic properties of the brain's functional architecture , 2014, Human brain mapping.

[2]  R. Todd Constable,et al.  Functional connectivity and alterations in baseline brain state in humans , 2010, NeuroImage.

[3]  P. Roland The posterior parietal association cortex in man , 1980, Behavioral and Brain Sciences.

[4]  N. C. Silver,et al.  Averaging Correlation Coefficients: Should Fishers z Transformation Be Used? , 1987 .

[5]  Wim Vanduffel,et al.  Stimulus representations in body-selective regions of the macaque cortex assessed with event-related fMRI , 2012, NeuroImage.

[6]  G. V. Van Hoesen,et al.  Neural connections of the posteromedial cortex in the macaque , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Perrett,et al.  Responses of Anterior Superior Temporal Polysensory (STPa) Neurons to Biological Motion Stimuli , 1994, Journal of Cognitive Neuroscience.

[8]  Dwight J. Kravitz,et al.  The ventral visual pathway: an expanded neural framework for the processing of object quality , 2013, Trends in Cognitive Sciences.

[9]  Charles M. Butter,et al.  Impairments in orienting to visual stimuli in monkeys following unilateral lesions of the superior sulcal polysensory cortex , 1986, Neuropsychologia.

[10]  Stefan Everling,et al.  Specific Contributions of Ventromedial, Anterior Cingulate, and Lateral Prefrontal Cortex for Attentional Selection and Stimulus Valuation , 2011, PLoS biology.

[11]  Laurie R Santos,et al.  A decade of theory of mind research on cayo santiago: Insights into rhesus macaque social cognition , 2016, American journal of primatology.

[12]  I. Kanno,et al.  Anesthesia and the Quantitative Evaluation of Neurovascular Coupling , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[13]  Mark H. Johnson Subcortical face processing , 2005, Nature Reviews Neuroscience.

[14]  Robert Desimone,et al.  Connectional subdivision of the claustrum: two visuotopic subdivisions in the macaque , 2014, Front. Syst. Neurosci..

[15]  Tobias Teichert,et al.  Effects of heartbeat and respiration on macaque fMRI: Implications for functional connectivity , 2010, Neuropsychologia.

[16]  Dimitri Van De Ville,et al.  White-Matter Connectivity between Face-Responsive Regions in the Human Brain , 2012 .

[17]  J. Haxby,et al.  The distributed human neural system for face perception , 2000, Trends in Cognitive Sciences.

[18]  Detlef Wegener,et al.  The Influence of Sustained Selective Attention on Stimulus Selectivity in Macaque Visual Area MT , 2004, The Journal of Neuroscience.

[19]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[20]  Jumpei Matsumoto,et al.  Neuronal responses to face‐like stimuli in the monkey pulvinar , 2013, The European journal of neuroscience.

[21]  Brian D. Mills,et al.  Bridging the Gap between the Human and Macaque Connectome: A Quantitative Comparison of Global Interspecies Structure-Function Relationships and Network Topology , 2014, The Journal of Neuroscience.

[22]  Yusuke Murayama,et al.  esfMRI of the upper STS: further evidence for the lack of electrically induced polysynaptic propagation of activity in the neocortex. , 2011, Magnetic resonance imaging.

[23]  Keiji Tanaka,et al.  Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. , 1988, Journal of neurophysiology.

[24]  Kaustubh Supekar,et al.  Development of Large-Scale Functional Brain Networks in Children , 2009, NeuroImage.

[25]  C. Frith,et al.  The Neural Basis of Mentalizing , 2006, Neuron.

[26]  Istvan Molnar-Szakacs,et al.  Watching social interactions produces dorsomedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline , 2004, NeuroImage.

[27]  M. Corbetta,et al.  Spatial neglect and attention networks. , 2011, Annual review of neuroscience.

[28]  Justin L. Vincent,et al.  Precuneus shares intrinsic functional architecture in humans and monkeys , 2009, Proceedings of the National Academy of Sciences.

[29]  Atsushi Iriki,et al.  Representation of Others' Action by Neurons in Monkey Medial Frontal Cortex , 2011, Current Biology.

[30]  Ayse Pinar Saygin,et al.  Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data , 2006, NeuroImage.

[31]  Andreas Horn,et al.  The structural–functional connectome and the default mode network of the human brain , 2014, NeuroImage.

[32]  R. Guillevin,et al.  Functional connectivity of the superior human temporal sulcus in the brain resting state at 3T , 2011, Neuroradiology.

[33]  Ivan Toni,et al.  On the relationship between the “default mode network” and the “social brain” , 2012, Front. Hum. Neurosci..

[34]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: II. Cortical afferents , 2003, The Journal of comparative neurology.

[35]  E. Hoshi,et al.  Multisynaptic projections from the ventrolateral prefrontal cortex to the dorsal premotor cortex in macaques – anatomical substrate for conditional visuomotor behavior , 2012, The European journal of neuroscience.

[36]  J. O'Doherty,et al.  Automatic and intentional brain responses during evaluation of trustworthiness of faces , 2002, Nature Neuroscience.

[37]  S. Everling,et al.  Monkey in the middle: why non-human primates are needed to bridge the gap in resting-state investigations , 2012, Front. Neuroanat..

[38]  M. Tomasello,et al.  Does the chimpanzee have a theory of mind? 30 years later , 2008, Trends in Cognitive Sciences.

[39]  Ravi S. Menon,et al.  Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. , 2012, Journal of neurophysiology.

[40]  M. Platt,et al.  Reflexive Social Attention in Monkeys and Humans , 2003, Current Biology.

[41]  G. Rizzolatti,et al.  ß Federation of European Neuroscience Societies Mirror , 2003 .

[42]  G. Orban,et al.  Default Mode of Brain Function in Monkeys , 2011, The Journal of Neuroscience.

[43]  Jesper Andersson,et al.  Valid conjunction inference with the minimum statistic , 2005, NeuroImage.

[44]  T. Ban,et al.  Commissural afferents to the cortex surrounding the posterior part of the superior temporal sulcus in the monkey , 1984, Neuroscience Letters.

[45]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[46]  Lindsey J. Powell,et al.  It's the Thought That Counts , 2006, Psychological science.

[47]  Stefan Everling,et al.  Distinct and distributed functional connectivity patterns across cortex reflect the domain-specific constraints of object, face, scene, body, and tool category-selective modules in the ventral visual pathway , 2014, NeuroImage.

[48]  Doris Y. Tsao,et al.  Patches with Links: A Unified System for Processing Faces in the Macaque Temporal Lobe , 2008, Science.

[49]  Xiaoping Hu,et al.  Altered local coherence in the default mode network due to sevoflurane anesthesia , 2010, Brain Research.

[50]  Laurie R Santos,et al.  The origins of belief representation: Monkeys fail to automatically represent others’ beliefs , 2014, Cognition.

[51]  Bradford Z. Mahon,et al.  What drives the organization of object knowledge in the brain? , 2011, Trends in Cognitive Sciences.

[52]  Geraint Rees,et al.  Better Ways to Improve Standards in Brain-Behavior Correlation Analysis , 2012, Front. Hum. Neurosci..

[53]  D. Pandya,et al.  Intrinsic connections and architectonics of the superior temporal sulcus in the rhesus monkey , 1989, The Journal of comparative neurology.

[54]  Habib Benali,et al.  Identification of large-scale networks in the brain using fMRI , 2006, NeuroImage.

[55]  P. Jezzard,et al.  Correction for geometric distortion in echo planar images from B0 field variations , 1995, Magnetic resonance in medicine.

[56]  Thomas E. Nichols,et al.  Functional connectomics from resting-state fMRI , 2013, Trends in Cognitive Sciences.

[57]  Anna S. Mitchell,et al.  A Neural Circuit Covarying with Social Hierarchy in Macaques , 2014, PLoS biology.

[58]  R. Matthew Hutchison,et al.  Resting-state fMRI reveals functional connectivity between face-selective perirhinal cortex and the fusiform face area related to face inversion , 2014, NeuroImage.

[59]  M. Costandi Default Mode Network , 2015 .

[60]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[61]  R. Mar The neural bases of social cognition and story comprehension. , 2011, Annual review of psychology.

[62]  E. Rolls,et al.  Neurons in the amygdala of the monkey with responses selective for faces , 1985, Behavioural Brain Research.

[63]  M. Harries,et al.  Visual Processing of Faces in Temporal Cortex: Physiological Evidence for a Modular Organization and Possible Anatomical Correlates , 1991, Journal of Cognitive Neuroscience.

[64]  Nadim Joni Shah,et al.  Minds Made for Sharing: Initiating Joint Attention Recruits Reward-related Neurocircuitry , 2010, Journal of Cognitive Neuroscience.

[65]  J. Call,et al.  The evolution of primate societies , 2012 .

[66]  Sylvia Wirth,et al.  Independent Neuronal Representation of Facial and Vocal Identity in the Monkey Hippocampus and Inferotemporal Cortex. , 2016, Cerebral cortex.

[67]  P. Jaccard THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1 , 1912 .

[68]  Doris Y. Tsao,et al.  Patches of face-selective cortex in the macaque frontal lobe , 2008, Nature Neuroscience.

[69]  J. Kaas,et al.  Supplementary eye field as defined by intracortical microstimulation: Connections in macaques , 1990, The Journal of comparative neurology.

[70]  J. Call,et al.  Understanding Other Minds , 2012 .

[71]  Jerome Sallet,et al.  Are there specialized circuits for social cognition and are they unique to humans? , 2013, Current Opinion in Neurobiology.

[72]  V. Raos,et al.  Involvement of the Superior Temporal Cortex in Action Execution and Action Observation , 2014, The Journal of Neuroscience.

[73]  David C. Van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[74]  N. M. Brooke,et al.  A molecular timescale for vertebrate evolution , 1998, Nature.

[75]  S Rozzi,et al.  Projections from the superior temporal sulcus to the agranular frontal cortex in the macaque , 2001, The European journal of neuroscience.

[76]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[77]  Gene H. Golub,et al.  Matrix computations , 1983 .

[78]  D. Schacter,et al.  The Brain's Default Network , 2008, Annals of the New York Academy of Sciences.

[79]  G H Glover,et al.  Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR , 2000, Magnetic resonance in medicine.

[80]  R. Saxe Uniquely human social cognition , 2006, Current Opinion in Neurobiology.

[81]  M. Goodale,et al.  The visual brain in action , 1995 .

[82]  J. Müller,et al.  Of the brain. , 1837 .

[83]  Doris Y. Tsao,et al.  Functional Compartmentalization and Viewpoint Generalization Within the Macaque Face-Processing System , 2010, Science.

[84]  G. Fink,et al.  Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain , 2008, Consciousness and Cognition.

[85]  Society of magnetic resonance in medicine , 1990 .

[86]  Henrik Walter,et al.  Functional relations of empathy and mentalizing: An fMRI study on the neural basis of cognitive empathy , 2011, NeuroImage.

[87]  Zeynep M. Saygin,et al.  Anatomical connectivity patterns predict face-selectivity in the fusiform gyrus , 2011, Nature Neuroscience.

[88]  Nicholas B. Turk-Browne,et al.  Face-Specific Resting Functional Connectivity between the Fusiform Gyrus and Posterior Superior Temporal Sulcus , 2010, Front. Hum. Neurosci..

[89]  M. Mallar Chakravarty,et al.  An MRI based average macaque monkey stereotaxic atlas and space (MNI monkey space) , 2011, NeuroImage.

[90]  Hide-Aki Saito,et al.  Functional mapping of the anterior bank of the superior temporal sulcus (STS) of the macaque monkey , 1986 .

[91]  P S Goldman-Rakic,et al.  Face-selective neurons during passive viewing and working memory performance of rhesus monkeys: evidence for intrinsic specialization of neuronal coding. , 1999, Cerebral cortex.

[92]  Jie Tian,et al.  Intrinsically organized network for face perception during the resting state , 2009, Neuroscience Letters.

[93]  Susana T. L. Chung,et al.  Ideal observer analysis of crowding and the reduction of crowding through learning. , 2010, Journal of vision.

[94]  Nikos K. Logothetis,et al.  Facial-Expression and Gaze-Selective Responses in the Monkey Amygdala , 2007, Current Biology.

[95]  Teri A. Crosby,et al.  How to Detect and Handle Outliers , 1993 .

[96]  A. Young,et al.  Modeling first impressions from highly variable facial images , 2014, Proceedings of the National Academy of Sciences.

[97]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[98]  E. Bullmore,et al.  Neurophysiological architecture of functional magnetic resonance images of human brain. , 2005, Cerebral cortex.

[99]  L. Brothers,et al.  The neural basis of primate social communication , 1990 .

[100]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.

[101]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[102]  Stefano Fusi,et al.  Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. , 2010, Annual review of neuroscience.

[103]  Sébastien M. Crouzet,et al.  Fast saccades toward faces: face detection in just 100 ms. , 2010, Journal of vision.

[104]  G. Rizzolatti,et al.  The Cortical Motor System , 2001, Neuron.

[105]  Claudio Galletti,et al.  Functional imaging of the parietal cortex during action execution and observation. , 2009, Cerebral cortex.

[106]  John W. Harwell,et al.  Cortical parcellations of the macaque monkey analyzed on surface-based atlases. , 2012, Cerebral cortex.

[107]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[108]  Timothy D. Verstynen,et al.  Using pulse oximetry to account for high and low frequency physiological artifacts in the BOLD signal , 2011, NeuroImage.

[109]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[110]  Angela R. Laird,et al.  Definition and characterization of an extended social-affective default network , 2014, Brain Structure and Function.

[111]  Derek C. Penn,et al.  On the lack of evidence that non-human animals possess anything remotely resembling a ‘theory of mind’ , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[112]  T. Allison,et al.  Social perception from visual cues: role of the STS region , 2000, Trends in Cognitive Sciences.

[113]  D. V. van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[114]  David J. Freedman,et al.  Categorical representation of visual stimuli in the primate prefrontal cortex. , 2001, Science.

[115]  Atsushi Iriki,et al.  Social error monitoring in macaque frontal cortex , 2012, Nature Neuroscience.

[116]  Galit Yovel,et al.  Face recognition systems in monkey and human: are they the same thing? , 2013, F1000prime reports.

[117]  L. M. Ward,et al.  Orienting of Attention , 2008 .

[118]  J. L. Hodges,et al.  Estimates of Location Based on Rank Tests , 1963 .

[119]  N. Logothetis,et al.  fMRI of the Face-Processing Network in the Ventral Temporal Lobe of Awake and Anesthetized Macaques , 2011, Neuron.