Investigation of solar noise impact on the performance of underwater wireless optical communication links

We investigate the e ffect of environmental noise, caused by solar radiations under water, on the performance of underwater wireless optical communication (UWOC) systems. Presenting an analytical and generic model for this noise, we examine its impact on the link performance in terms of the bit error rate (BER). This study is conducted for di fferent photodetector types in the aim of highlighting practical limitations of establishing UWOC links in the presence of subsea solar noise. We show how the solar noise can impact the performance of UWOC links for relatively low operation depths. The results we present provide valuable insight for the design of UWOC links, which are likely to be established at relatively low depths. They can be exploited not only for the purpose of practical UWOC system deployment but also for inpool experimental set-ups, since they elucidate the e ffect of ambient light on the measurements. c © 2016 Optical Society of America OCIS codes: (060.4510) Optical communications; (060.2605) Free-space optical communication. References and links 1. M. A. Khalighi, C. Gabriel, T. Hamza, S. Bourennane, P. Léon, and V. Rigaud, “Underwater wireless optical communication; recent advances and remaining challenges,” in Proceedings of 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria, July 2014. pp. 1–4. 2. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47(2), 277–283 (2008). 3. A. Fletcher, S. Hamilton, and J. Moores, “Undersea laser communication with narrow beams,” IEEE Commun. Mag.53(11), 49–55 (2015). 4. C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5(1), 1–12 (2013). 5. B. Cochenour, L. Mullen, and J. Muth, “Temporal response of the underwater optical channel for high-bandwidth wireless laser communications,” IEEE J. Ocea. Eng. 38(4), 730–742 (2013). 6. M. Doniec, M. Angermann, and D. Rus, “An end-to-end signal strength model for underwater optical communications,” IEEE J. Ocea. Eng. 38(4), 743–757 (2013). 7. F. R. Dalgleish, J. J. Shirron, D. Rashkin, T. E. Giddings, A. K. Vuorenkoski Dalgleish, I. Cardei, B. Ouyang, F. M. Caimi, and M. Cardeic, “Physical layer simulator for undersea free-space laser communications,” Opt. Eng., 53(5), 051410 (2014). 8. P. Lacovara, “High-bandwidth underwater communications,” Marine Tech. Soc. J. 42(1), 93–102 (2008). 9. S. Q. Duntley, “Light in the sea,” J. Opt. Soc. Am. 53(2), 214–233 (1963). 10. J. W. Giles and I. N. Bankman, “Underwater optical communication systems. part 2 : Basic design considerations,” in Proceedings of Military Communications Conference (MILCOM) 3, Atlantic City, NJ, USA (2005). pp. 1700– 1705 11. J. E. Tyler, “Radiance distribution as a function of depth in an underwater environment,” Bull. Scripps Inst. Oceanogr.7(5), 363–412 (1960). 12. C. D. Mobley, “A numerical model for the computation of radiance distributions in natural waters with windroughened surfaces,” Limnol. Oceanogr. 34(8), 1473–1483 (1989). 13. G. Cossu, R. Corsini, A. M. Khalid, S. Balestrino, A. Coppelli, A. Caiti, and E. Ciaramella, “Experimental demonstration of high speed underwater visible light communications,” in Proceedings of International Workshop on Optical Wireless Communications (IWOW), Newcastle upon Tyne, UK, Oct. 2013. pp. 11–15. 14. N. Farr, A. Chave, L. Freitag, J. Preisig, S. White, D. Yoerger, and P. Titterton, “Optical modem technology for seafloor observatories,” in Proceedings of OCEANS Conf., Boston, MA, 2006. pp. 1–6. 15. Sonardyne, http://www.sonardyne.com/ . Vol. 24, No. 22 | 31 Oct 2016 | OPTICS EXPRESS 25832 #273319 http://dx.doi.org/10.1364/OE.24.025832 Journal © 2016 Received 9 Aug 2016; revised 4 Oct 2016; accepted 10 Oct 2016; published 28 Oct 2016 16. C. Mobley,Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994). 17. T. Petzold,Volume Scattering Functions for Selected Ocean Waters (Scri. Inst. of Ocean., 1972) San Diego, CA, USA. 18. Philips LUMILEDS Ligh. Co., Luxeon rebel color portfolio datasheet ds68 20140527 (2014). http://www.lumileds.com . 19. J. M. Kahn and J. R. Barry, “Wireless infrared communication,” Proceedings of IEEE 85(2), 265–298 (1997). 20. R. Ramirez-Iniguez, S. M. Idrus, and Z. Sun, Optical Wireless Communications: IR for Wireless Connectivity (CRC Press, 2008). 21. M. Kavehrad, M. I. S. Chowdhury, and Z. Zhou, Fundamentals of Optical Wireless Communications, in ShortRange Optical Wireless: Theory and Applications (John Wiley and Sons, Ltd, 2015) Chichester, UK. 22. F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of di fferent noise sources on the performance of PINand APDbased FSO receivers,” in Proceedings of COST Action IC-0802 Workshop, IEEE ConTEL Conf., Graz, Austria, 2011. pp. 211–218. 23. R. Toledo-Crow, S. Shi, and Y. Li, “Analysis of a two-PMT system for simultaneous backand forward-fluorescence detection in multiphoton microscopy,” Biomedical Optics, OSA Technical Digest, BMD56. 24. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991). 25. M. A. Khalighi, F. Xu, Y. Jaafar, and S. Bourennane, “Double-laser di fferential signaling for reducing the e ff ct of background radiation in free-space optical systems,” J. Opt. Commun. Netw. 3(2), 145–154 (2011). 26. R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed. (Wiley, 1995). 27. Hamamatsu, Photomultiplier Tubes, Basics and Applications (Edition 3a) (Hamamatsu Photonics K. K, 2007). 28. F. Qiang,Encyclopedia of Atmospheric Sciences (J. R. Holton, 2003), Chap. Radiation (solar). pp. 1859 – 1863. 29. ASTM-International, “Standard tables for reference solar spectral irradiances,” http://www.astm.org/Standards/G173.htm. 30. T. Komine and M. Nakagawa, “Fundamental analysis for visible light communications using led lights,” IEEE Trans. Consumer Elec. 50(1), 100–107 (2004). 31. Hamamatsu, “R3896, R12896 High Sensitivity Multialkali Photocathode 28 mm (1-1 /8 Inch) Diameter, 9-Stage, Side-On Type,”http://www.hamamatsu.com. 32. W. C. Cox, “Simulation, Modeling and Design of Underwater Optical Communication Systems,” (PhD Thesis, North Carolina University, Raleigh, North Carolina, USA, 2012). 33. ITU-T Recommendation G.975.1, (02 /2004). 34. A. H. Azhar, T.-A. Tran, and D. O’Brien, “A Gigabit /s indoor wireless transmission using MIMO-OFDM visiblelight communications,” IEEE Photon. Technol. Lett. 25(11), 171–174 (2013). 35. C. Mobley, E. Boss, and C. Roesler, Ocean Optics Web Book (2016). http://www.oceanopticsbook.info/ 36. E. W. Abrahamson, Ch. Baumann, C. D. B. Bridges, F. Crescitelli, H. J. A. Dartnall, R. M. Eakin, G. Falk, P. Fatt, T. H. Goldsmith, R. Hara, T. Hara, S. M. Japar, P. A. Liebman, J. N. Lythgoe, R. A. Morton, W. R. A. Muntz, W. A. H. Rushton, T. I. Shaw, and J. R. Wiesenfeld, T. Yoshizawa , Photochemistry of Vision (Herbert J. A. Dartnall, 1972). 37. Z. Ghassemlooy, S. Rajbhandari, and W. Popoola, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC Press, 2013).