Strong asymptotics for Laguerre polynomials with varying weights

Abstract Supplementing and extending classical and recent results strong asymptotics for the Laguerre polynomials L n ( α n ) are established, as n → ∞, when the parameter α n depends on the degree n suitably. A case of particular interest is the one for which α n grows faster than n . Rescaling the argument z appropriately the resulting asymptotic forms are described by elementary functions, thereby extending the classical formulae of Plancherel-Rotach type for Laguerre polynomials L n ( α ) ( z ), α being fixed.

[1]  Frank W. J. Olver,et al.  Introduction to Asymptotics and Special Functions , 1974 .

[2]  Edward B. Saff,et al.  Polynomials with laguerre weights in Lp , 1984 .

[3]  Wolfgang Gawronski STRONG ASYMPTOTICS AND THE ASYMPTOTIC ZERO DISTRIBUTIONS OF LAGUERRE POLYNOMIALS Ln(an+α) AND HERMITE POLYNOMIALS Ηn(an+α) , 1993 .

[4]  E. A. Rakhmanov Strong asymptotics for orthogonal polynomials , 1993 .

[5]  Richard S. Varga,et al.  The sharpness of Lorentz’s theorem on incomplete polynomials , 1979 .

[6]  W. J. Studden,et al.  Some new asymptotic properties for the zeros of Jacobi, Laguerre, and Hermite polynomials , 1994, math/9406224.

[7]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[8]  Holger Dette,et al.  On a new characterization of the classical orthogonal polynomials , 1992 .

[9]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[10]  D. Lubinsky Strong asymptotics for extremal errors and polynomials associated with Erdös-type weights , 1989 .

[11]  N. Temme Polynomial Asymptotic Estimates of Gegenbauer, Laguerre, and Jacobi Polynomials , 2020, Asymptotic and Computational Analysis.

[12]  W. Gawronski On the asymptotic distribution of the zeros of Hermite, Laguerre, and Jonquiegre polynomials , 1987 .

[13]  Weighted polynomials on finite and infinite intervals: a unified approach , 1984 .

[14]  W. Assche Some results on the asymptotic distribution of the zeros of orthogonal polynomials , 1985 .

[15]  Walter Van Assche,et al.  Asymptotics for Orthogonal Polynomials , 1987 .

[16]  Edward B. Saff,et al.  Strong Asymptotics for Extremal Polynomials Associated With Weights on Ir , 1988 .

[17]  E. Rakhmanov,et al.  EQUILIBRIUM MEASURE AND THE DISTRIBUTION OF ZEROS OF EXTREMAL POLYNOMIALS , 1986 .

[18]  Roderick Wong,et al.  Uniform Asymptotic Expansions of Laguerre Polynomials , 1988 .

[19]  T. Mark Dunster,et al.  Uniform asymptotic expansions for Whittaker's confluent hypergeometric functions , 1989 .

[20]  A. Erdélyi Asymptotic Forms for Laguerre Polynomials , 1960 .

[21]  R. Varga,et al.  Rational Approximation and Interpolation , 1985 .

[22]  Wolfgang Gawronski,et al.  On the limit distributions of the zeros of Jonquiegre polynomials and generalized classical orthogonal polynomials , 1995 .

[23]  Nico M. Temme,et al.  Asymptotic estimates for Laguerre polynomials , 1990 .

[24]  Hrushikesh Narhar Mhaskar,et al.  Where does the sup norm of a weighted polynomial live? , 1985 .

[25]  D. Lubinsky A survey of general orthogonal polynomials for weights on finite and infinite intervals , 1987, Acta Applicandae Mathematicae.

[26]  Lothar Berg,et al.  Asymptotische Darstellungen und Entwicklungen , 1968 .

[27]  Mourad E. H. Ismail,et al.  On asymptotics of Jacobi polynomials , 1991 .