Fractional Schrödinger equation with noninteger dimensions

The spatial and time dependent solutions of the Schrodinger equation incorporating the fractional time derivative of distributed order and extending the spatial operator to noninteger dimensions are investigated. They are obtained by using the Green function approach in two situations: the free case and in the presence of a harmonic potential. The results obtained show an anomalous spreading of the wave packet which may be related to an anomalous diffusion process.

[1]  Fractional Diffusion Equation in Cylindrical Symmetry: A New Derivation , 2008 .

[2]  Anomalous diffusion and the adsorption-desorption process in anisotropic media , 2009 .

[3]  Bo Zhu,et al.  The space fractional diffusion equation with Feller's operator , 2011, Appl. Math. Comput..

[4]  Francesco Mainardi,et al.  The Wright functions as solutions of the time-fractional diffusion equation , 2003, Appl. Math. Comput..

[5]  W. Coffey,et al.  The Langevin equation : with applications to stochastic problems in physics, chemistry, and electrical engineering , 2012 .

[6]  Frank H. Stillinger,et al.  Axiomatic basis for spaces with noninteger dimension , 1977 .

[7]  I. Procaccia,et al.  Analytical solutions for diffusion on fractal objects. , 1985, Physical review letters.

[8]  Francesco Mainardi,et al.  Some aspects of fractional diffusion equations of single and distributed order , 2007, Appl. Math. Comput..

[9]  J. Machado,et al.  Mathematical Methods in Engineering , 2007, Nonlinear Systems and Complexity.

[10]  Ralf Metzler,et al.  Fractional dynamics : recent advances , 2011 .

[11]  C. Tsallis,et al.  Nonlinear relativistic and quantum equations with a common type of solution. , 2011, Physical review letters.

[12]  Haroldo V. Ribeiro,et al.  Continuous-time random walk as a guide to fractional Schrödinger equation , 2010 .

[13]  Xiaoyun Jiang,et al.  Exact solutions of fractional Schrödinger-like equation with a nonlocal term , 2011 .

[14]  Arak M. Mathai,et al.  The H-Function with Applications in Statistics and Other Disciplines. , 1981 .

[15]  Kevin Burrage,et al.  Sources of anomalous diffusion on cell membranes: a Monte Carlo study. , 2007, Biophysical journal.

[16]  H. Şirin,et al.  Time fractional development of quantum systems , 2010 .

[17]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[18]  E. K. Lenzia,et al.  Fractional Diffusion Equation and External Forces : Solutions in a Confined Region , 2010 .

[19]  A. M. Edwards,et al.  Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer , 2007, Nature.

[20]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[21]  G. Weiss Aspects and Applications of the Random Walk , 1994 .

[22]  K. Shuler,et al.  Stochastic processes in chemical physics , 1969 .

[23]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[24]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[25]  Y. Povstenko FRACTIONAL HEAT CONDUCTION EQUATION AND ASSOCIATED THERMAL STRESS , 2004 .

[26]  Mingyu Xu,et al.  Generalized fractional Schrödinger equation with space-time fractional derivatives , 2007 .

[27]  Shaowei Wang,et al.  Green’s function of time fractional diffusion equation and its applications in fractional quantum mechanics , 2009 .

[28]  V Latora,et al.  Non-Gaussian equilibrium in a long-range Hamiltonian system. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[30]  Michael F. Shlesinger,et al.  Strange kinetics , 1993, Nature.

[31]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[32]  Yasuhiro Fujita,et al.  INTEGRODIFFERENTIAL EQUATION WHICH INTERPOLATES THE HEAT EQUATION AND THE WAVE EQUATION I(Martingales and Related Topics) , 1989 .

[33]  V. Ugaz,et al.  Interfacial complexation explains anomalous diffusion in nanofluids. , 2010, Nano letters.

[34]  J. A. Tenreiro Machado,et al.  New Trends in Nanotechnology and Fractional Calculus Applications , 2010 .

[35]  M. Jeng,et al.  On the nonlocality of the fractional Schrödinger equation , 2010 .

[36]  E. C. Oliveira,et al.  The fractional Schrödinger equation for delta potentials , 2010 .

[37]  Tom H Johansen,et al.  Localized and delocalized motion of colloidal particles on a magnetic bubble lattice. , 2007, Physical review letters.

[38]  L. R. Evangelista,et al.  Solutions for a Schrödinger equation with a nonlocal term , 2008 .

[39]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[40]  Jian-Jun Dong,et al.  Applications of continuity and discontinuity of a fractional derivative of the wave functions to fractional quantum mechanics , 2008 .

[41]  R. Metzler,et al.  Fractional model equation for anomalous diffusion , 1994 .

[42]  Gernot Guigas,et al.  Sampling the cell with anomalous diffusion - the discovery of slowness. , 2008, Biophysical journal.

[43]  George H. Weiss,et al.  Stochastic Processes in Chemical Physics: The Master Equation , 1977 .

[44]  Andrzej Hanygad,et al.  Multidimensional solutions of time-fractional diffusion-wave equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  Mingyu Xu,et al.  The time fractional heat conduction equation in the general orthogonal curvilinear coordinate and the cylindrical coordinate systems , 2010 .

[46]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[47]  H. V. Ribeiro,et al.  Solutions for a fractional diffusion equation with noninteger dimensions , 2012 .

[48]  SUPERDIFFUSION AND OUT-OF-EQUILIBRIUM CHAOTIC DYNAMICS WITH MANY DEGREES OF FREEDOMS , 1999, cond-mat/9904389.

[49]  Ke Chen,et al.  Applied Mathematics and Computation , 2022 .

[50]  L. R. Evangelista,et al.  Non-Markovian diffusion and the adsorption-desorption process. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  F. Mainardi The fundamental solutions for the fractional diffusion-wave equation , 1996 .

[52]  Y. Povstenko Central symmetric solution to the Neumann problem for a time-fractional diffusion-wave equation in a sphere , 2012 .

[53]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  I. Podlubny Fractional differential equations , 1998 .

[55]  Nuo Yang,et al.  Violation of Fourier's Law and Anomalous Heat Diffusion in Silicon , 2010, 1002.3419.

[56]  Y. Povstenko Fractional radial diffusion in a cylinder , 2008 .

[57]  M. Naber Time fractional Schrödinger equation , 2004, math-ph/0410028.

[58]  Yury F. Luchko Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation , 2011 .

[59]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .