Spectral analysis of simulated species distribution maps provides insights into metapopulation dynamics

Modelling the spatial dynamics of populations is a basic approach in ecology, in order to understand their observed spatial and temporal patterns, which can be diverse and complex. From the metapopulation perspective, the spatial distribution of populations results from colonization–extinction random process over a network of suitable habitat cells. Hence, evaluating such dynamic is an important issue for the follow-up of populations. Our aim here is to demonstrate that Fourier spectral analysis of population distribution maps can provide insights into metapopulation dynamics in a heterogeneous habitat. We simulated metapopulation dynamics in spatially structured habitat maps and investigated the steady spatial occupancy patterns using Fourier analysis. We showed that there were separable spectral signatures of habitat structure and of population dynamics. Fourier spectral analysis thus provides a promising tool for inferring independent characteristics of metapopulation dynamics and habitat structure from species occurrence data.

[1]  Ricard V. Solé,et al.  Habitat Fragmentation and Extinction Thresholds in Spatially Explicit Models , 1996 .

[2]  Nicolas Barbier,et al.  Textural Ordination Based on Fourier Spectral Decomposition: A Method to Analyze and Compare Landscape Patterns , 2006, Landscape Ecology.

[3]  R. Lande,et al.  Extinction Thresholds in Demographic Models of Territorial Populations , 1987, The American Naturalist.

[4]  T. Keitt Spectral representation of neutral landscapes , 2004, Landscape Ecology.

[5]  Generalized contact process on random environments. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  György Szabó,et al.  Dynamics of populations on the verge of extinction , 2005 .

[7]  Ilkka Hanski,et al.  2. Predictive and Practical Metapopulation Models: The Incidence Function Approach , 1998 .

[8]  Robert V. O'Neill,et al.  Pattern, process, and predictability: the use of neutral models for landscape analysis , 1991 .

[9]  R. Gardner,et al.  Quantitative Methods in Landscape Ecology , 1991 .

[10]  K. Denman,et al.  Spectral Analysis in Ecology , 1975 .

[11]  Peter Kareiva,et al.  Spatial ecology : the role of space in population dynamics and interspecific interactions , 1998 .

[12]  Bai-Lian Li,et al.  Fractal geometry applications in description and analysis of patch patterns and patch dynamics , 2000 .

[13]  J. Weitz Generalized contact processes in ecology , 2003 .

[14]  R. Freckleton,et al.  Are all plant populations metapopulations? , 2003 .

[15]  O. Ovaskainen,et al.  Spatially structured metapopulation models: global and local assessment of metapopulation capacity. , 2001, Theoretical population biology.

[16]  Eric Renshaw,et al.  A practical guide to the spectral analysis of spatial point processes , 1996 .

[17]  Atte Moilanen,et al.  METAPOPULATION DYNAMICS: EFFECTS OF HABITAT QUALITY AND LANDSCAPE STRUCTURE , 1998 .

[18]  R. Levins Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control , 1969 .

[19]  Eric Renshaw,et al.  Detection of geological lineations on aerial photographs using two-dimensional spectral analysis , 1998 .

[20]  A. Louisa,et al.  コロイド混合体における有効力 空乏引力から集積斥力へ | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2002 .

[21]  Bruce T. Milne,et al.  Indices of landscape pattern , 1988, Landscape Ecology.

[22]  Alain Franc,et al.  Metapopulation dynamics as a contact process on a graph , 2004 .

[23]  O. Eriksson,et al.  Large‐scale spatial dynamics of plants: a response to Freckleton & Watkinson , 2003 .

[24]  T. Liggett,et al.  Stochastic Interacting Systems: Contact, Voter and Exclusion Processes , 1999 .

[25]  I. Hanski Metapopulation dynamics , 1998, Nature.

[26]  T. E. Harris Contact Interactions on a Lattice , 1974 .

[27]  Ilkka Hanski,et al.  Metapopulation structure and migration in the butterfly Melitaea cinxia , 1994 .

[28]  T. Simons,et al.  Spatial autocorrelation and autoregressive models in ecology , 2002 .

[29]  Michel Baguette,et al.  The classical metapopulation theory and the real, natural world: a critical appraisal , 2004 .

[30]  R. O'Neill,et al.  A hierarchical neutral model for landscape analysis , 1992, Landscape Ecology.

[31]  Mats Gyllenberg,et al.  Uniting Two General Patterns in the Distribution of Species , 1997, Science.

[32]  Pierre Legendre,et al.  All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices , 2002 .

[33]  J. Lundquist,et al.  Use of fourier transforms to define landscape scales of analysis for disturbances: a case study of thinned and unthinned forest stands , 2002, Landscape Ecology.

[34]  Jorge X Velasco-Hernández,et al.  Extinction Thresholds and Metapopulation Persistence in Dynamic Landscapes , 2000, The American Naturalist.

[35]  Otso Ovaskainen,et al.  The metapopulation capacity of a fragmented landscape , 2000, Nature.

[36]  P. Couteron Using spectral analysis to confront distributions of individual species with an overall periodic pattern in semi-arid vegetation , 2001, Plant Ecology.

[37]  I. Olivieri,et al.  Centaurea corymbosa, a cliff-dwelling species tottering on the brink of extinction: a demographic and genetic study. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. R. Johnson,et al.  A hierarchical framework for the analysis of scale , 1989, Landscape Ecology.

[39]  R. Nisbet,et al.  Spatial structure and fluctuations in the contact process and related models , 2000, Bulletin of mathematical biology.

[40]  K. Riitters,et al.  A multi-scale analysis of landscape statistics , 1997, Landscape Ecology.

[41]  R. Etienne,et al.  Non-equilibria in small metapopulations: comparing the deterministic Levins model with its stochastic counterpart. , 2002, Journal of Theoretical Biology.

[42]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[43]  Nicolas Schtickzelle,et al.  Metapopulation dynamics of the bog fritillary butterfly: demographic processes in a patchy population , 2002 .

[44]  Robert V. O'Neill,et al.  Neutral models for the analysis of broad-scale landscape pattern , 1987, Landscape Ecology.

[45]  R. Freckleton,et al.  Large‐scale spatial dynamics of plants: metapopulations, regional ensembles and patchy populations , 2002 .

[46]  David E. Hiebeler,et al.  Populations on fragmented landscapes with spatially structured heterogeneities : Landscape generation and local dispersal , 2000 .