Alteration of the aortic vascular reactivity associated to excessive consumption of Hibiscus sabdariffa Linnaeus: Preliminary findings

[1]  M. Soto,et al.  Excessive Consumption Hibiscus sabdariffa L. Increases Inflammation and Blood Pressure in Male Wistar Rats via High Antioxidant Capacity: The Preliminary Findings , 2022, Cells.

[2]  J. Loscalzo,et al.  Selenium, a Micronutrient That Modulates Cardiovascular Health via Redox Enzymology , 2021, Nutrients.

[3]  T. Kirchner,et al.  The mitochondrial thioredoxin reductase system (TrxR2) in vascular endothelium controls peroxynitrite levels and tissue integrity , 2021, Proceedings of the National Academy of Sciences.

[4]  Lyanne M. Kieneker,et al.  Systemic Oxidative Stress, Aging and the Risk of Cardiovascular Events in the General Female Population , 2021, Frontiers in Cardiovascular Medicine.

[5]  M. Soto,et al.  Nitrosative Stress and Its Association with Cardiometabolic Disorders , 2020, Molecules.

[6]  J. Loscalzo,et al.  Metabolic Responses to Reductive Stress , 2020, Antioxidants & redox signaling.

[7]  R. Touyz,et al.  Oxidative Stress: A Unifying Paradigm in Hypertension , 2020, The Canadian journal of cardiology.

[8]  M. Soto,et al.  Oxidant/Antioxidant Profile in the Thoracic Aneurysm of Patients with the Loeys-Dietz Syndrome , 2020, Oxidative medicine and cellular longevity.

[9]  S. Dharmaraj,et al.  Selenium and selenoproteins: it’s role in regulation of inflammation , 2020, Inflammopharmacology.

[10]  C. Carvalho,et al.  The thioredoxin system as a target for mercury compounds. , 2019, Biochimica et biophysica acta. General subjects.

[11]  M. Pérezpeña-Díazconti,et al.  Myocardial Protection from Ischemia-Reperfusion Damage by the Antioxidant Effect of Hibiscus sabdariffa Linnaeus on Metabolic Syndrome Rats , 2019, Oxidative medicine and cellular longevity.

[12]  R. Donato,et al.  Nrf2-Keap1 signaling in oxidative and reductive stress. , 2018, Biochimica et biophysica acta. Molecular cell research.

[13]  G. Lizard,et al.  Correlation of trans fatty acids with the severity of coronary artery disease lesions , 2018, Lipids in Health and Disease.

[14]  I. Pérez-Torres,et al.  Reductive Stress in Inflammation-Associated Diseases and the Pro-Oxidant Effect of Antioxidant Agents , 2017, International journal of molecular sciences.

[15]  P. Yenchitsomanus,et al.  In-vitro Studies of Anti-EGFR Tyrosine Kinase Activity of Thai nutraceutical Plants , 2017, Iranian journal of pharmaceutical research : IJPR.

[16]  T. Kirchner,et al.  Endothelial Dysfunction, and A Prothrombotic, Proinflammatory Phenotype Is Caused by Loss of Mitochondrial Thioredoxin Reductase in Endothelium , 2016, Arteriosclerosis, thrombosis, and vascular biology.

[17]  A. Doroszko,et al.  Insulin Resistance and Endothelial Dysfunction Constitute a Common Therapeutic Target in Cardiometabolic Disorders , 2016, Mediators of inflammation.

[18]  S. Moncada,et al.  Inflammation, glucose, and vascular cell damage: the role of the pentose phosphate pathway , 2016, Cardiovascular Diabetology.

[19]  A. Oladiji,et al.  Hibiscus sabdariffa calyx palliates insulin resistance, hyperglycemia, dyslipidemia and oxidative rout in fructose-induced metabolic syndrome rats. , 2016, Journal of the science of food and agriculture.

[20]  P. White Selenium accumulation by plants. , 2015, Annals of botany.

[21]  S. Krähenbühl,et al.  Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis. , 2015, Biochimica et biophysica acta.

[22]  M. Heinrich,et al.  Hibiscus sabdariffa L. - a phytochemical and pharmacological review. , 2014, Food chemistry.

[23]  O. Erel,et al.  A novel and automated assay for thiol/disulphide homeostasis. , 2014, Clinical biochemistry.

[24]  I. Pérez-Torres,et al.  Modification of the liver fatty acids by Hibiscus sabdariffa Linnaeus (Malvaceae) infusion, its possible effect on vascular reactivity in a metabolic syndrome model , 2014, Clinical and experimental hypertension.

[25]  Santiago Lamas,et al.  Hydrogen peroxide signaling in vascular endothelial cells , 2014, Redox biology.

[26]  A. Holmgren,et al.  The thioredoxin antioxidant system. , 2014, Free radical biology & medicine.

[27]  Daphne Merkus,et al.  Reactive Oxygen Species and the Cardiovascular System , 2013, Oxidative medicine and cellular longevity.

[28]  I. Pérez-Torres,et al.  Hibiscus sabdariffa Linnaeus (Malvaceae), curcumin and resveratrol as alternative medicinal agents against metabolic syndrome. , 2013, Cardiovascular & hematological agents in medicinal chemistry.

[29]  P. Berillis,et al.  The Role of Collagen in the Aorta's Structure , 2013 .

[30]  S. Steinberg Oxidative Stress and Sarcomeric Proteins , 2013, Circulation research.

[31]  V. Adam,et al.  Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. , 2012, Oncology letters.

[32]  I. Benjamin,et al.  Glutathione‐dependent reductive stress triggers mitochondrial oxidation and cytotoxicity , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[33]  D. Carroll,et al.  The Endothelium and Its Role in Regulating Vascular Tone , 2010, The open cardiovascular medicine journal.

[34]  A. Ismail,et al.  Antioxidant activity in different parts of roselle (Hibiscus sabdariffa L.) extracts and potential exploitation of the seeds , 2010 .

[35]  Neil J Kelly,et al.  Glutathione Peroxidase-1 Regulates Mitochondrial Function to Modulate Redox-dependent Cellular Responses* , 2009, Journal of Biological Chemistry.

[36]  E. Decker Phenolics: prooxidants or antioxidants? , 2009, Nutrition reviews.

[37]  I. Pérez-Torres,et al.  Association of renal damage and oxidative stress in a rat model of metabolic syndrome. Influence of gender , 2009, Free radical research.

[38]  V. Kukongviriyapan,et al.  Uricosuric effect of Roselle (Hibiscus sabdariffa) in normal and renal-stone former subjects. , 2008, Journal of ethnopharmacology.

[39]  G. Bartosz,et al.  Antioxidative and prooxidative effects of quercetin on A549 cells , 2007, Cell biology international.

[40]  Y. Huang,et al.  Endothelial‐specific expression of mitochondrial thioredoxin improves endothelial cell function and reduces atherosclerotic lesions , 2007, The American journal of pathology.

[41]  R. Hayeshi,et al.  The inhibition of human glutathione S-transferases activity by plant polyphenolic compounds ellagic acid and curcumin. , 2007, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[42]  Irfan Rahman,et al.  Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method , 2006, Nature Protocols.

[43]  H. Struijker‐Boudier,et al.  Expert consensus document on arterial stiffness: methodological issues and clinical applications. , 2006, European heart journal.

[44]  Jungmin Lee,et al.  Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. , 2005, Journal of AOAC International.

[45]  J. Stamler,et al.  A central role for S-nitrosylation in apoptosis , 2005, Nature Cell Biology.

[46]  Kap-Seok Yang,et al.  Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. , 2005, Current opinion in cell biology.

[47]  P. Proksch,et al.  Low concentrations of flavonoids are protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis. , 2005, The Journal of nutrition.

[48]  Xueji Zhang,et al.  Measurement of Nitric Oxide Production in Biological Systems by Using Griess Reaction Assay , 2003 .

[49]  J. Loscalzo,et al.  Glucose-6-Phosphate Dehydrogenase Overexpression Decreases Endothelial Cell Oxidant Stress and Increases Bioavailable Nitric Oxide , 2003, Arteriosclerosis, thrombosis, and vascular biology.

[50]  T. Grune Oxidants and antioxidative defense , 2002, Human & experimental toxicology.

[51]  T. Tseng,et al.  Induction of apoptosis by hibiscus protocatechuic acid in human leukemia cells via reduction of retinoblastoma (RB) phosphorylation and Bcl-2 expression. , 2000, Biochemical pharmacology.

[52]  Henryk Szymusiak,et al.  Prooxidant toxicity of polyphenolic antioxidants to HL‐60 cells: description of quantitative structure‐activity relationships , 1999, FEBS letters.

[53]  Y. Mori,et al.  Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. , 1999, The Journal of clinical investigation.

[54]  A. Terada,et al.  Active oxygen species generation and cellular damage by additives of parenteral preparations: selenium and sulfhydryl compounds. , 1999, Nutrition.

[55]  Mengcheng Tang,et al.  The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals , 1999 .

[56]  U. Ikeda,et al.  Nitric oxide and cardiac failure , 1997, Clinical cardiology.

[57]  S. Moncada,et al.  A specific inhibitor of nitric oxide formation from l‐arginine attenuates endothelium‐dependent relaxation , 1989, British journal of pharmacology.

[58]  S. Passi,et al.  Comparative cytotoxicity of phenols in vitro. , 1987, The Biochemical journal.

[59]  R. Pardini,et al.  Inhibition of mitochondrial respiration and production of toxic oxygen radicals by flavonoids. A structure-activity study. , 1986, Biochemical pharmacology.

[60]  M. Marletta,et al.  Inhibition of cytochrome P-450 activity in rat liver microsomes by the naturally occurring flavonoid, quercetin. , 1985, Archives of Biochemistry and Biophysics.

[61]  J. Gutteridge The use of standards for malonyldialdehyde. , 1975, Analytical biochemistry.

[62]  H. Wolinsky,et al.  Long‐Term Effects of Hypertension on the Rat Aortic Wall and Their Relation to Concurrent Aging Changes: MORPHOLOGICAL AND CHEMICAL STUDIES , 1972, Circulation research.

[63]  V. Krajka-Kuźniak,et al.  Hepatic and extrahepatic expression of glutathione S-transferase isozymes in mice and its modulation by naturally occurring phenolic acids. , 2008, Environmental toxicology and pharmacology.

[64]  D. Leibfritz,et al.  Free radicals and antioxidants in normal physiological functions and human disease. , 2007, The international journal of biochemistry & cell biology.

[65]  F H Silver,et al.  Viscoelasticity of the vessel wall: the role of collagen and elastic fibers. , 2001, Critical reviews in biomedical engineering.

[66]  C. Lee [43] Glucose-6-phosphate dehydrogenase from mouse , 1982 .