The contribution of historical processes to contemporary extinction risk in placental mammals
暂无分享,去创建一个
Voichita D. Marinescu | Andreas R. Pfenning | Graham M. Hughes | BaDoi N. Phan | Irene M. Kaplow | Pardis C Sabeti | F. Di Palma | B. Birren | K. Lindblad-Toh | Z. Weng | M. Diekhans | K. Pollard | T. Marquès-Bonet | H. Clawson | B. Paten | O. Wallerman | W. Murphy | R. Hubley | E. Karlsson | E. Teeling | A. Navarro | G. Muntané | M. Springer | E. Eizirik | Jill E. Moore | S. Gazal | B. Shapiro | H. Lewin | Steven K. Reilly | Oliver A. Ryder | D. Ray | Jason Turner-Maier | C. Steiner | Jeremy Johnson | K. Fan | J. Meadows | Diana D. Moreno-Santillán | S. Kozyrev | M. Christmas | K. Koepfli | Morgan E. Wirthlin | Ross Swofford | G. Hickey | Abigail L. Lind | Joana Damas | Kathleen Morrill | Nicole M. Foley | J. Gatesy | Ayshwarya Subramanian | Alyssa J. Lawler | Joy-El R B Talbot | T. Lehmann | P. Sullivan | Kathleen C. Keough | K. Forsberg-Nilsson | D. Genereux | Chaitanya Srinivasan | E. Sundström | Daniel E. Schäffer | David Juan | M. Nweeia | B. Kirilenko | S. Ortmann | A. Valenzuela | Arian F. A. Smit | Aryn P. Wilder | Aitor Serres | Carlos J. Garcia | Anish Mudide | Juehan Wang | Chao Wang | I. Ruf | Jessica M. Storer | M. Bianchi | Aitor Serres-Armero | Amanda Kowalczyk | C. Lawless | Xue Li | D. Levesque | Xiaomeng Zhang | Kathleen Foley | Wynn K. Meyer | Jeb Rosen | A. Breit | Victor C. Mason | Andrew J. Harris | K. Bredemeyer | Nicole S. Paulat | Austin B. Osmanski | Michael Hiller | L. R. Moreira | Megan A. Supple | J. Korstian | Franziska Wagner | Ava Mackay-Smith | Jenna R. Grimshaw | Michaela K. Halsey | Kevin A. M. Sullivan | H. Pratt | Allyson Hindle | Louise Ryan | Linda Goodman | Michael X. Dong | Joel C. Armstrong | Violeta Munoz Fuentes | James R. Xue | Gregory Andrews | Cornelia Fanter | Klaus‐Peter Koepfli | Graham M. Hughes | Jennifer M. Korstian | Jeremy Johnson | Tomàs Marquès-Bonet | Bogdan M. Kirilenko
[1] Voichita D. Marinescu,et al. Evolutionary constraint and innovation across hundreds of placental mammals , 2023, bioRxiv.
[2] H. Ellegren,et al. From high masked to high realized genetic load in inbred Scandinavian wolves , 2022, Molecular ecology.
[3] C. van Oosterhout,et al. Genomic erosion in the assessment of species extinction risk and recovery potential , 2022, bioRxiv.
[4] W. Murphy,et al. A genomic timescale for placental mammal evolution , 2022, bioRxiv.
[5] Christopher C. Kyriazis,et al. The critically endangered vaquita is not doomed to extinction by inbreeding depression , 2022, Science.
[6] G. Bertorelle,et al. Genetic load: genomic estimates and applications in non-model animals , 2022, Nature Reviews Genetics.
[7] P. Hedrick,et al. The crucial role of genome-wide genetic variation in conservation , 2021, Proceedings of the National Academy of Sciences.
[8] J. DeWoody,et al. The long‐standing significance of genetic diversity in conservation , 2021, Molecular ecology.
[9] C. van Oosterhout,et al. Comment on “Individual heterozygosity predicts translocation success in threatened desert tortoises” , 2021, Science.
[10] U. Ramakrishnan,et al. Genomic evidence for inbreeding depression and purging of deleterious genetic variation in Indian tigers , 2021, Proceedings of the National Academy of Sciences.
[11] David Alvarez-Ponce,et al. Mammals with Small Populations Do Not Exhibit Larger Genomes , 2021, Molecular biology and evolution.
[12] Thomas M. Keane,et al. Twelve years of SAMtools and BCFtools , 2020, GigaScience.
[13] J. C. Teixeira,et al. The inflated significance of neutral genetic diversity in conservation genetics , 2020, Proceedings of the National Academy of Sciences.
[14] Roy C. Averill-Murray,et al. Individual heterozygosity predicts translocation success in threatened desert tortoises , 2020, Science.
[15] R. Nielsen,et al. Evolution of the genetic architecture of local adaptations under genetic rescue is determined by mutational load and polygenicity , 2020, bioRxiv.
[16] Voichita D. Marinescu,et al. Progressive Cactus is a multiple-genome aligner for the thousand-genome era , 2020, Nature.
[17] Voichita D. Marinescu,et al. A comparative genomics multitool for scientific discovery and conservation , 2020, Nature.
[18] E. Madin,et al. Herbivores at the highest risk of extinction among mammals, birds, and reptiles , 2020, Science Advances.
[19] D. Miles. Can Morphology Predict the Conservation Status of Iguanian Lizards? , 2020, Integrative and comparative biology.
[20] N. Gemmell,et al. Determinants of genetic variation across eco-evolutionary scales in pinnipeds , 2020, Nature Ecology & Evolution.
[21] N. Dulvy,et al. Eliminating the dark matter of data deficiency by predicting the conservation status of Northeast Atlantic and Mediterranean Sea sharks and rays , 2020 .
[22] C. van Oosterhout. Mutation load is the spectre of species conservation , 2020, Nature Ecology & Evolution.
[23] A. Toyoda,et al. Accumulation of Deleterious Mutations in Landlocked Threespine Stickleback Populations , 2020, Genome biology and evolution.
[24] D. Schluter,et al. Vulnerability to Fishing and Life History Traits Correlate with the Load of Deleterious Mutations in Teleosts , 2020, Molecular biology and evolution.
[25] T. Sicheritz-Pontén,et al. Historical population declines prompted significant genomic erosion in the northern and southern white rhinoceros (Ceratotherium simum) , 2020, bioRxiv.
[26] Bernard Y. Kim,et al. Population genetic models of GERP scores suggest pervasive turnover of constrained sites across mammalian evolution , 2019, bioRxiv.
[27] Parice A. Brandies,et al. The Value of Reference Genomes in the Conservation of Threatened Species , 2019, Genes.
[28] F. Samarra,et al. North Atlantic killer whale Orcinus orca populations: a review of current knowledge and threats to conservation , 2019, Mammal Review.
[29] Brendan L. O’Connell,et al. Puma genomes from North and South America provide insights into the genomic consequences of inbreeding , 2019, Nature Communications.
[30] Austin H. Patton,et al. Contemporary Demographic Reconstruction Methods Are Robust to Genome Assembly Quality: A Case Study in Tasmanian Devils , 2019, Molecular biology and evolution.
[31] T. Marquès-Bonet,et al. Estimates of genetic load suggest frequent purging of deleterious alleles in small populations 1 , 2020 .
[32] L. Keller,et al. Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex , 2019, bioRxiv.
[33] S. Yeaman,et al. Unpacking conditional neutrality: genomic signatures of selection on conditionally beneficial and conditionally deleterious mutations , 2019, bioRxiv.
[34] R. Wayne,et al. Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction , 2018, Science Advances.
[35] Bernard Y. Kim,et al. Purging of Strongly Deleterious Mutations Explains Long-Term Persistence and Absence of Inbreeding Depression in Island Foxes , 2018, Current Biology.
[36] B. Shapiro,et al. Conservation of biodiversity in the genomics era , 2018, Genome Biology.
[37] Rebecca B. Dikow,et al. Genome sequence and population declines in the critically endangered greater bamboo lemur (Prolemur simus) and implications for conservation , 2018, BMC Genomics.
[38] Damian Smedley,et al. The International Mouse Phenotyping Consortium (IMPC): a functional catalogue of the mammalian genome that informs conservation , 2018, Conservation Genetics.
[39] Sanjit S. Batra,et al. The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000 , 2018, bioRxiv.
[40] Jacob Schreiber,et al. Pomegranate: fast and flexible probabilistic modeling in python , 2017, J. Mach. Learn. Res..
[41] J. M. Anderson. The Annihilation of Nature: Human Extinction of Birds and Mammals , 2017 .
[42] P. Humphries,et al. Trait‐based prediction of extinction risk of small‐bodied freshwater fishes , 2017, Conservation biology : the journal of the Society for Conservation Biology.
[43] P. Hedrick,et al. Understanding Inbreeding Depression, Purging, and Genetic Rescue. , 2016, Trends in ecology & evolution.
[44] Molly Przeworski,et al. Evolutionary history inferred from the de novo assembly of a nonmodel organism, the blue-eyed black lemur , 2015, Molecular ecology.
[45] A. Clark,et al. Estimating the mutation load in human genomes , 2015, Nature Reviews Genetics.
[46] David W. Macdonald,et al. Collapse of the world’s largest herbivores , 2015, Science Advances.
[47] C. Orme,et al. Predicting the conservation status of data‐deficient species , 2015, Conservation biology : the journal of the Society for Conservation Biology.
[48] Matthew W. Hahn,et al. Convergent evolution of the genomes of marine mammals , 2015, Nature Genetics.
[49] E. Teeling,et al. How and why should we implement genomics into conservation? , 2014, Evolutionary applications.
[50] C. Ané,et al. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. , 2014, Systematic biology.
[51] Michael Eickenberg,et al. Machine learning for neuroimaging with scikit-learn , 2014, Front. Neuroinform..
[52] M. Hebblewhite,et al. Status and Ecological Effects of the World’s Largest Carnivores , 2014, Science.
[53] Ilan Gronau,et al. Genome Sequencing Highlights the Dynamic Early History of Dogs , 2014, PLoS genetics.
[54] L. Santini,et al. Generation length for mammals , 2013 .
[55] David Haussler,et al. HAL: a hierarchical format for storing and analyzing multiple genome alignments , 2013, Bioinform..
[56] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.
[57] Huanming Yang,et al. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation , 2012, Nature Genetics.
[58] Pablo Cingolani,et al. © 2012 Landes Bioscience. Do not distribute. , 2022 .
[59] Albert J. Vilella,et al. A high-resolution map of human evolutionary constraint using 29 mammals , 2011, Nature.
[60] R. Durbin,et al. Inference of Human Population History From Whole Genome Sequence of A Single Individual , 2011, Nature.
[61] Marcel Martin. Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .
[62] C. Marshall,et al. Has the Earth’s sixth mass extinction already arrived? , 2011, Nature.
[63] William N. Venables,et al. Modern Applied Statistics with S , 2010 .
[64] G. Luikart,et al. Genomics and the future of conservation genetics , 2010, Nature Reviews Genetics.
[65] M. DePristo,et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.
[66] Kate E. Jones,et al. PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals , 2009 .
[67] M. Jakobsson,et al. Nonlinear Dynamics of Nonsynonymous (dN) and Synonymous (dS) Substitution Rates Affects Inference of Selection , 2009, Genome biology and evolution.
[68] P. Hedrick. Conservation genetics and North American bison (Bison bison). , 2009, The Journal of heredity.
[69] James H Brown,et al. Multiple ecological pathways to extinction in mammals , 2009, Proceedings of the National Academy of Sciences.
[70] Gonçalo R. Abecasis,et al. The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..
[71] S. Otto. Fixation Probabilities and Times , 2005 .
[72] B. Hansson,et al. On the correlation between heterozygosity and fitness in natural populations , 2002, Molecular ecology.
[73] Sudhir Kumar,et al. Mutation rates in mammalian genomes , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[74] J. L. Gittleman,et al. Predicting extinction risk in declining species , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[75] M. Kimura. Evolutionary Rate at the Molecular Level , 1968, Nature.
[76] R. Nowak,et al. Walker's mammals of the world , 1968 .
[77] F.. THE MUTATION LOAD IN SMALL POPULATIONS , 2022 .