Analysis of a non-Markovian queueing model: Bayesian statistics and MCMC methods

Abstract The stationary distribution is the key of any queueing system; its determination is sufficient to infer the corresponding characteristics. This paper deals with the Er / M / 1 {\mathrm{Er}/M/1} queue. Bayesian inference is developed to estimate the system parameters, specially the root of the relative equation which allows the determination of the stationary distribution. A numerical study is performed with MCMC methods to support the results, and a comparison with another existing method in the literature (moments method) is provided.

[1]  M. J. Bayarri,et al.  Bayesian prediction inM/M/1 queues , 1994, Queueing Syst. Theory Appl..

[2]  M. J. Bayarri,et al.  A Bayesian analysis of a queueing system with unlimited service , 1997 .

[3]  Lee W. Schruben,et al.  Some consequences of estimating parameters for the M/M/1 queue , 1982, Oper. Res. Lett..

[4]  M. Muddapur,et al.  Bayesian estimates of parameters in some queueing models , 1972 .

[5]  Nozer D. Singpurwalla,et al.  A subjective Bayesian approach to the theory of queues II — Inference and information in M/M/1 queues , 1986, Queueing Syst. Theory Appl..

[6]  K. Senthamarai Kannan,et al.  Bayesian queueing model with multiple working vacations under Gumbel distribution , 2015 .

[7]  A. Clarke Maximum Likelihood Estimates in a Simple Queue , 1957 .

[8]  Yoni Nazarathy,et al.  Parameter and State Estimation in Queues and Related Stochastic Models: A Bibliography , 2017, ArXiv.

[9]  Michael P. Wiper,et al.  Mixtures of Gamma Distributions With Applications , 2001 .

[10]  Michael P. Wiper,et al.  Bayesian analysis of Er/M/1 and Er/M/c queues , 1998 .

[11]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[12]  Arnold O. Allen Probability, Statistics, and Queueing Theory , 1978 .

[13]  S. Lazic,et al.  Introducing Monte Carlo Methods with R , 2012 .

[14]  María Concepción Ausín,et al.  Bayesian estimation for the M/G/1 queue using a phase-type approximation , 2004 .

[15]  Michael P. Wiper,et al.  Bayesian analysis of M/Er/1 and M/H_k/1 queues , 1998, Queueing Syst. Theory Appl..

[16]  C. P. Robert Le Choix Bayésien: principes et pratique , 2006 .

[17]  M. J. Bayarri,et al.  Dealing with Uncertainties in Queues and Networks of Queues: a Bayesian Approach , 2022 .

[18]  Sudha Jain,et al.  Estimation in M/Er /1 queueing systems , 1991 .

[19]  Xingzhong Xu,et al.  A generalized p-value approach to inference on the performance measures of an M/Ek/1 queueing system , 2016 .

[20]  Michael P. Wiper,et al.  Bayesian control of the number of servers in a GI /M/c queueing system , 2007 .

[21]  A. Jabarali,et al.  Single server queueing model with Gumbel distribution using Bayesian approach , 2016 .

[22]  Amit Choudhury,et al.  Statistical inference on traffic intensity in an M / M / 1 queueing system , 2018 .