Sobolev gradient preconditioning for elliptic reaction-diffusion problems with some nonsmooth nonlinearities

Abstract The Sobolev gradient approach is an efficient way to construct preconditioned iterations for solving nonlinear problems. We extend this technique to be applicable for elliptic equations describing stationary states of reaction–diffusion problems if the nonlinearities have certain lack of differentiability. We derive convergence results of the Sobolev gradient method on an abstract level and then for our elliptic problem under different assumptions. Numerical tests show convergence as expected.

[1]  Sergey Korotov,et al.  Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions , 2005, Numerische Mathematik.

[2]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[3]  Ionut Danaila,et al.  Sobolev Gradients and Image Interpolation , 2011, SIAM J. Imaging Sci..

[4]  J. W. Neuberger,et al.  Numerical solution of Burgers' equation by the Sobolev gradient method , 2011, Appl. Math. Comput..

[5]  P. Kazemi,et al.  Tackling the Gross-Pitaevskii energy functional with the Sobolev gradient - Analytical and numerical results , 2009, 0906.3206.

[6]  B. Kovács A comparison of some efficient numerical methods for a nonlinear elliptic problem , 2012 .

[7]  R. Renka A Sobolev gradient method for treating the steady-state incompressible Navier-Stokes equations , 2013 .

[8]  Peter Grindrod,et al.  The Theory and Applications of Reaction Diffusion Equations : Patterns and Waves , 1996 .

[9]  Nauman Raza,et al.  Numerical approximation of time evolution related to Ginzburg-Landau functionals using weighted Sobolev gradients , 2014, Comput. Math. Appl..

[10]  Maryam Yashtini,et al.  On the global convergence rate of the gradient descent method for functions with Hölder continuous gradients , 2016, Optim. Lett..

[11]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[12]  Robert J. Renka,et al.  Nonlinear least squares and Sobolev gradients , 2013 .

[13]  SOBOLEV GRADIENTS: INTRODUCTION, APPLICATIONS, PROBLEMS , 2002 .

[14]  István Faragó,et al.  Preconditioning operators and Sobolevgradients for nonlinear elliptic problems , 2005 .

[15]  István Faragó,et al.  Sobolev gradient type preconditioning for the saint-venant model of elasto-plastic torsion , 2008 .