Dense Scale Invariant Descriptors for Images and Surfaces

Local descriptors are ubiquitous in image and shape analysis, as they allow the compact and robust description of the local content of a signal (image or 3D shape). A common problem that emerges in the computation of local descriptors is the variability of the signal scale. The standard approach to cope with this is scale selection, which consists in estimating a characteristic scale around the few image or shape points where scale estimation can be performed reliably. However, it is often desired to have a scale-invariant descriptor that can be constructed densely, namely at every point of the image or 3D shape. In this work, we construct scale-invariant signal descriptors by introducing a method that does not rely on scale selection; this allows us to apply our method at any point. Our method relies on a combination of logarithmic sampling with multi-scale signal processing that turns scaling in the original signal domain into a translation in a new domain. Scale invariance can then be guaranteed by computing the Fourier transform magnitude (FTM), which is unaffected by signal translations. We use our technique to construct scale- and rotation- invariant descriptors for images and scale- and isometry-invariant descriptors for 3D surfaces, and demonstrate that our descriptors outperform state-of-the-art descriptors on standard benchmarks.

[1]  D. Casasent,et al.  Position, rotation, and scale invariant optical correlation. , 1976, Applied optics.

[2]  Yehoshua Y. Zeevi,et al.  The Generalized Gabor Scheme of Image Representation in Biological and Machine Vision , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[4]  T. Lindeberg,et al.  Foveal scale-space and the linear increase of receptive field size as a function of eccentricity , 1994 .

[5]  George Wolberg,et al.  Robust image registration using log-polar transform , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[6]  Georg Hartmann,et al.  Invariant object recognition with discriminant features based on local fast-Fourier Mellin transform , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[7]  Michael Felsberg,et al.  The monogenic signal , 2001, IEEE Trans. Signal Process..

[8]  Ron Kimmel,et al.  Bending invariant representations for surfaces , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[9]  Michael Elad,et al.  Content Based Retrieval of VRML Objects - An Iterative and Interactive Approach , 2001, Eurographics Multimedia Workshop.

[10]  Tsuhan Chen,et al.  Efficient feature extraction for 2D/3D objects in mesh representation , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[11]  Jitendra Malik,et al.  Geometric blur for template matching , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[12]  Brendan J. Frey,et al.  Fast Transformation-Invariant Factor Analysis , 2002, NIPS.

[13]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[14]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[15]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[16]  Joost van de Weijer,et al.  Fast Anisotropic Gauss Filtering , 2002, ECCV.

[17]  Cordelia Schmid,et al.  Shape recognition with edge-based features , 2003, BMVC.

[18]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[19]  Pietro Perona,et al.  A Bayesian approach to unsupervised one-shot learning of object categories , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[20]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[21]  Fabrice Labeau,et al.  Discrete Time Signal Processing , 2004 .

[22]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[23]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[24]  R. Sukthankar,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[25]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[26]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[27]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[28]  Stefano Soatto,et al.  Integral Invariant Signatures , 2004, ECCV.

[29]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..

[30]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[31]  Niklas Peinecke,et al.  Laplace-spectra as fingerprints for shape matching , 2005, SPM '05.

[32]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  E. L. Schwartz,et al.  Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception , 1977, Biological Cybernetics.

[34]  Haibin Ling,et al.  Using the inner-distance for classification of articulated shapes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[35]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[36]  Leonidas J. Guibas,et al.  Robust global registration , 2005, SGP '05.

[37]  Helmut Pottmann,et al.  Reassembling fractured objects by geometric matching , 2006, ACM Trans. Graph..

[38]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[39]  Frédéric Jurie,et al.  Sampling Strategies for Bag-of-Features Image Classification , 2006, ECCV.

[40]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Leonidas J. Guibas,et al.  Probabilistic fingerprints for shapes , 2006, SGP '06.

[42]  Cordelia Schmid,et al.  Maximally Stable Local Description for Scale Selection , 2006, ECCV.

[43]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[44]  Gang Hua,et al.  Discriminant Embedding for Local Image Descriptors , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[45]  Friedrich Fraundorfer,et al.  A Binning Scheme for Fast Hard Drive Based Image Search , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Michael Isard,et al.  Object retrieval with large vocabularies and fast spatial matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[48]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[49]  Cordelia Schmid,et al.  A contextual dissimilarity measure for accurate and efficient image search , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  Eli Shechtman,et al.  Matching Local Self-Similarities across Images and Videos , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Michael Isard,et al.  Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[52]  Alfred M. Bruckstein,et al.  Analysis of Two-Dimensional Non-Rigid Shapes , 2008, International Journal of Computer Vision.

[53]  Iasonas Kokkinos,et al.  Scale invariance without scale selection , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[54]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[55]  Stefano Soatto,et al.  Localizing Objects with Smart Dictionaries , 2008, ECCV.

[56]  Vincent Lepetit,et al.  A fast local descriptor for dense matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[57]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[58]  Craig Gotsman,et al.  Characterizing Shape Using Conformal Factors , 2008, 3DOR@Eurographics.

[59]  Guillermo Sapiro,et al.  Three-dimensional point cloud recognition via distributions of geometric distances , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[60]  A. Bronstein,et al.  Shape Google : a computer vision approach to invariant shape retrieval , 2009 .

[61]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[62]  Andrea Fusiello,et al.  Visual Vocabulary Signature for 3D Object Retrieval and Partial Matching , 2009, 3DOR@Eurographics.

[63]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[64]  Rasmus Larsen,et al.  Shape Analysis Using the Auto Diffusion Function , 2009 .

[65]  Daniela Giorgi,et al.  Discrete Laplace-Beltrami operators for shape analysis and segmentation , 2009, Comput. Graph..

[66]  Matthew A. Brown,et al.  Picking the best DAISY , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[67]  R. Horaud,et al.  Surface feature detection and description with applications to mesh matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[68]  Renaud Keriven,et al.  Non-rigid Shape Matching Using Geometry and Photometry , 2009, ACCV.

[69]  Ilan Shimshoni,et al.  On edge detection on surfaces , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[70]  Zen Chen,et al.  A Zernike Moment Phase-Based Descriptor for Local Image Representation and Matching , 2010, IEEE Transactions on Image Processing.

[71]  Iasonas Kokkinos,et al.  SHREC 2010: robust large-scale shape retrieval benchmark , 2010 .

[72]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[73]  Benjamin Bustos,et al.  A Robust 3D Interest Points Detector Based on Harris Operator , 2010, 3DOR@Eurographics.

[74]  Alexander M. Bronstein,et al.  Volumetric heat kernel signatures , 2010, 3DOR '10.

[75]  Michael Isard,et al.  Descriptor Learning for Efficient Retrieval , 2010, ECCV.

[76]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[77]  Hongping Cai,et al.  Learning Linear Discriminant Projections for Dimensionality Reduction of Image Descriptors , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[78]  Alexander M. Bronstein,et al.  Affine-invariant diffusion geometry for the analysis of deformable 3D shapes , 2010, CVPR 2011.

[79]  Gang Hua,et al.  Discriminative Learning of Local Image Descriptors , 1990, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[80]  Alexander M. Bronstein,et al.  Spectral descriptors for deformable shapes , 2011, ArXiv.

[81]  Alexander M. Bronstein,et al.  Deformable Shape Retrieval by Learning Diffusion Kernels , 2011, SSVM.

[82]  Andrew Zisserman,et al.  The devil is in the details: an evaluation of recent feature encoding methods , 2011, BMVC.

[83]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[84]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Scenes and Its Applications , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[85]  Alexander M. Bronstein,et al.  Photometric Heat Kernel Signatures , 2011, SSVM.

[86]  Alexander M. Bronstein,et al.  Diffusion-geometric maximally stable component detection in deformable shapes , 2010, Comput. Graph..

[87]  Alexander M. Bronstein,et al.  Shape Recognition with Spectral Distances , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[88]  W. Marsden I and J , 2012 .

[89]  Pascal Fua,et al.  LDAHash: Improved Matching with Smaller Descriptors , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[90]  Lihi Zelnik-Manor,et al.  On SIFTs and their scales , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.