Phase synchronization of coupled bursting neurons and the generalized Kuramoto model

Bursting neurons fire rapid sequences of action potential spikes followed by a quiescent period. The basic dynamical mechanism of bursting is the slow currents that modulate a fast spiking activity caused by rapid ionic currents. Minimal models of bursting neurons must include both effects. We considered one of these models and its relation with a generalized Kuramoto model, thanks to the definition of a geometrical phase for bursting and a corresponding frequency. We considered neuronal networks with different connection topologies and investigated the transition from a non-synchronized to a partially phase-synchronized state as the coupling strength is varied. The numerically determined critical coupling strength value for this transition to occur is compared with theoretical results valid for the generalized Kuramoto model.

[1]  W. Marsden I and J , 2012 .

[2]  Mark Newman,et al.  Models of the Small World , 2000 .

[3]  Nikolai F. Rulkov,et al.  Oscillations in Large-Scale Cortical Networks: Map-Based Model , 2004, Journal of Computational Neuroscience.

[4]  H. Bergman,et al.  Pathological synchronization in Parkinson's disease: networks, models and treatments , 2007, Trends in Neurosciences.

[5]  Pablo Varona,et al.  Dynamics of two electrically coupled chaotic neurons: Experimental observations and model analysis , 2001, Biological Cybernetics.

[6]  J. Kurths,et al.  Exploring Brain Function from Anatomical Connectivity , 2011, Front. Neurosci..

[7]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  S. R. Lopes,et al.  Chaotic phase synchronization in scale-free networks of bursting neurons. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  F Moss,et al.  Noise-induced impulse pattern modifications at different dynamical period-one situations in a computer model of temperature encoding. , 2001, Bio Systems.

[11]  B. Balas,et al.  Personal Familiarity Influences the Processing of Upright and Inverted Faces in Infants , 2009, Front. Hum. Neurosci..

[12]  Fabrizio Gabbiani,et al.  Burst firing in sensory systems , 2004, Nature Reviews Neuroscience.

[13]  L Q English,et al.  Synchronization in phase-coupled Kuramoto oscillator networks with axonal delay and synaptic plasticity. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[15]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[16]  Marcus Kaiser,et al.  Organization and Function of Complex Cortical Networks , 2007 .

[17]  R. Llinás,et al.  Experimentally determined chaotic phase synchronization in a neuronal system. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Rosenblum,et al.  Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Dante R. Chialvo Critical brain networks , 2004 .

[20]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[21]  Jean-Pascal Pfister,et al.  STDP in Oscillatory Recurrent Networks: Theoretical Conditions for Desynchronization and Applications to Deep Brain Stimulation , 2010, Front. Comput. Neurosci..

[22]  Ricardo L. Viana,et al.  Bursting synchronization in scale-free networks , 2009 .

[23]  Charles J. Wilson,et al.  Move to the rhythm: oscillations in the subthalamic nucleus–external globus pallidus network , 2002, Trends in Neurosciences.

[24]  C. Koch,et al.  Methods in Neuronal Modeling: From Ions to Networks , 1998 .

[25]  Antonio M. Batista,et al.  Delayed feedback control of bursting synchronization in a scale-free neuronal network , 2010, Neural Networks.

[26]  J. Kurths,et al.  Phase Synchronization of Chaotic Oscillators by External Driving , 1997 .

[27]  N. Rulkov Regularization of synchronized chaotic bursts. , 2000, Physical review letters.

[28]  R. L. Viana,et al.  Bursting synchronization in networks with long-range coupling mediated by a diffusing chemical substance , 2011, 1109.3332.

[29]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[30]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[31]  R L Viana,et al.  Synchronization of bursting Hodgkin-Huxley-type neurons in clustered networks. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Miguel A F Sanjuán,et al.  Bursting frequency versus phase synchronization in time-delayed neuron networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  A. Benabid,et al.  Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus , 1991, The Lancet.

[34]  Frank Moss,et al.  Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons. , 2000, Chaos.

[35]  Gesine Reinert,et al.  Small worlds , 2001, Random Struct. Algorithms.

[36]  A. Albanese,et al.  Deep Brain Stimulation for Parkinson's Disease: Where Do We Stand? , 2011, Front. Neur..

[37]  Y. Yaari,et al.  Extracellular Calcium Modulates Persistent Sodium Current-Dependent Burst-Firing in Hippocampal Pyramidal Neurons , 2001, The Journal of Neuroscience.

[38]  M. Newman,et al.  Renormalization Group Analysis of the Small-World Network Model , 1999, cond-mat/9903357.

[39]  Bin Deng,et al.  Chaotic phase synchronization in small-world networks of bursting neurons. , 2011, Chaos.

[40]  P. Shorten,et al.  A Hodgkin-Huxley model exhibiting bursting oscillations , 2000, Bulletin of mathematical biology.

[41]  J. Dostrovsky,et al.  Neuronal Oscillations in the Basal Ganglia and Movement Disorders: Evidence from Whole Animal and Human Recordings , 2004, The Journal of Neuroscience.

[42]  F Gabbiani,et al.  Feature Extraction by Burst-Like Spike Patterns in Multiple Sensory Maps , 1998, The Journal of Neuroscience.

[43]  K. Schäfer,et al.  Periodic firing pattern in afferent discharges from electroreceptor organs of catfish , 2004, Pflügers Archiv.

[44]  R Stoop,et al.  Multiple-time-scale framework for understanding the progression of Parkinson's disease. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  M. Sanjuán,et al.  Map-based models in neuronal dynamics , 2011 .

[46]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[47]  Markus Christen,et al.  Collective bursting in layer IV. Synchronization by small thalamic inputs and recurrent connections. , 2002, Brain research. Cognitive brain research.

[48]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[49]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[50]  S. Sherman,et al.  Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys , 2000, Visual Neuroscience.

[51]  Nazim Madhavji,et al.  Organization , 2020, WER.

[52]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[53]  Martin Tobias Huber,et al.  Computer Simulations of Neuronal Signal Transduction: The Role of Nonlinear Dynamics and Noise , 1998 .

[54]  Samuel Kotz,et al.  A truncated Cauchy distribution , 2006 .

[55]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[56]  J. Obeso,et al.  Bilateral deep brain stimulation in Parkinson's disease: a multicentre study with 4 years follow-up. , 2005, Brain : a journal of neurology.

[57]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[58]  Mahdi Jalili,et al.  Failure tolerance of spike phase synchronization in coupled neural networks. , 2011, Chaos.

[59]  Sergio Gómez,et al.  A Complex Network Approach to the Determination of Functional Groups in the Neural System of C. Elegans , 2008, BIOWIRE.

[60]  Jack W Scannell,et al.  The connectional organization of neural systems in the cat cerebral cortex , 1993, Current Biology.

[61]  Peter A. Tass,et al.  Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites: a computational study , 2005, Biological Cybernetics.

[62]  Ramón Huerta,et al.  Slow dynamics and regularization phenomena in ensembles of chaotic neurons , 1999 .

[63]  A. Selverston,et al.  Synchronous Behavior of Two Coupled Biological Neurons , 1998, chao-dyn/9811010.

[64]  R. Worth,et al.  Fine temporal structure of beta oscillations synchronization in subthalamic nucleus in Parkinson's disease. , 2010, Journal of neurophysiology.

[65]  M. Kim,et al.  Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations. , 1976, Biophysical journal.

[66]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[67]  Frank Moss,et al.  Low-Dimensional Dynamics in Sensory Biology 2: Facial Cold Receptors of the Rat , 1999, Journal of Computational Neuroscience.

[68]  R. L. Viana,et al.  Bursting synchronization in non-locally coupled maps , 2008 .

[69]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[70]  D. Wang,et al.  The time dimension for scene analysis , 2005, IEEE Transactions on Neural Networks.

[71]  Jürgen Kurths,et al.  Phase synchronization in ensembles of bursting oscillators. , 2004, Physical review letters.

[72]  H. Robinson,et al.  Spontaneous periodic synchronized bursting during formation of mature patterns of connections in cortical cultures , 1996, Neuroscience Letters.

[73]  Ruedi Stoop,et al.  Collective Bursting in Populations of Intrinsically Nonbursting Neurons , 1999 .

[74]  S. R. Lopes,et al.  Phase synchronization of bursting neurons in clustered small-world networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  H A Braun,et al.  Phase-space structure of a thermoreceptor. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[76]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[77]  Florian Gomez,et al.  Macroscopic bursting in physiological networks: node or network property? , 2015 .

[78]  B. Bollobás The evolution of random graphs , 1984 .

[79]  M. Womack,et al.  Active Contribution of Dendrites to the Tonic and Trimodal Patterns of Activity in Cerebellar Purkinje Neurons , 2002, The Journal of Neuroscience.

[80]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[81]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[82]  Nikolai F Rulkov,et al.  Modeling of spiking-bursting neural behavior using two-dimensional map. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[84]  Peter A. Tass,et al.  A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations , 2003, Biological Cybernetics.

[85]  J. Guieu,et al.  Control of tremor and involuntary movement disorders by chronic stereotactic stimulation of the ventral intermediate thalamic nucleus. , 1992, Journal of neurosurgery.

[86]  P. Brown Abnormal oscillatory synchronisation in the motor system leads to impaired movement , 2007, Current Opinion in Neurobiology.

[87]  E. Ott,et al.  Onset of synchronization in large networks of coupled oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[88]  Andreas Daffertshofer,et al.  Generative Models of Cortical Oscillations: Neurobiological Implications of the Kuramoto Model , 2010, Front. Hum. Neurosci..

[89]  C. Blakemore,et al.  Analysis of connectivity in the cat cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.