Transfer function models for distributed-parameter systems with impedance boundary conditions

ABSTRACT A transfer function description is derived for a general class of linear distributed parameter systems dependent on time and one spatial variable. Suitable functional transformations are the Laplace transformation for the time variable and the Sturm– Liouville transformation for the space variable. A practical problem is the determination of the eigenfunctions of the Sturm– Liouville transformation since these depend on the type and the parameters of the boundary conditions. This contribution shows that the design of a transfer function model can be separated from the correct treatment of the boundary conditions. The presented approach exhibits strong parallels to state feedback techniques from control theory. Examples for an electrical transmission line demonstrate how terminations with arbitrary complex impedances can be considered without redesigning the transmission line model.

[1]  Thorsten Gerber,et al.  Semigroups Of Linear Operators And Applications To Partial Differential Equations , 2016 .

[2]  Hans Zwart,et al.  Transfer functions for infinite-dimensional systems , 2004, Syst. Control. Lett..

[3]  Rudolf Rabenstein,et al.  A SIMPLIFIED DESIGN OF MULTIDIMENSIONAL TRANSFER FUNCTION MODELS , 2004 .

[4]  David P. Berners The discontinuous conical bore as a Sturm–Liouville problem , 1996 .

[5]  Rudolf Rabenstein,et al.  Calculation of the transformation kernels for the functional transformation method , 2017, 2017 10th International Workshop on Multidimensional (nD) Systems (nDS).

[6]  Petra Koenig,et al.  Digital Sound Synthesis By Physical Modeling Using The Functional Transformation Method , 2016 .

[7]  J. Willems The Behavioral Approach to Open and Interconnected Systems , 2007, IEEE Control Systems.

[8]  A. Cemal Eringen THE FINITE STURM-LIOUVILLE TRANSFORM , 1954 .

[9]  Chia-Yen Lee,et al.  Distributed Control of Heat Conduction in Thermal Inductive Materials with 2D Geometrical Isomorphism , 2014, Entropy.

[10]  Federico Avanzini,et al.  A Modular Physically Based Approach to the Sound Synthesis of Membrane Percussion Instruments , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[11]  Rudolf Rabenstein,et al.  Digital sound synthesis of string instruments with the functional transformation method , 2003, Signal Process..

[12]  Joachim Deutscher,et al.  Parametric state feedback design of linear distributed-parameter systems , 2009, Int. J. Control.

[13]  Boe-Shong Hong Realization of inhomogeneous boundary conditions as virtual sources in parabolic and hyperbolic dynamics , 2014 .

[14]  Joachim Deutscher,et al.  Zustandsregelung verteilt-parametrischer Systeme , 2012 .

[15]  Friedrich-Alexander A PHYSICAL STRING MODEL WITH ADJUSTABLE BOUNDARY CONDITIONS , 2016 .

[16]  G. Antonini Spectral Models of Lossy Nonuniform Multiconductor Transmission Lines , 2012, IEEE Transactions on Electromagnetic Compatibility.

[17]  G. Antonini,et al.  A Dyadic Green's Function Based Method for the Transient Analysis of Lossy and Dispersive Multiconductor Transmission Lines , 2008, IEEE Transactions on Microwave Theory and Techniques.

[18]  Jerrold E. Marsden,et al.  An Introduction to Infinite-Dimensional Systems , 1999 .

[19]  A. G. Butkovskiy Structural theory of distributed systems , 1983 .

[20]  Joachim Deutscher,et al.  Parametric state feedback design for second-order Riesz-spectral systems , 2009, 2009 European Control Conference (ECC).

[21]  Tosio Kato Perturbation theory for linear operators , 1966 .

[22]  J. Pryce Numerical Solution of Sturm-Liouville Problems , 1994 .

[23]  Frank Woittennek,et al.  Controllability of Networks of Spatially One-Dimensional Second Order PDEs---An Algebraic Approach , 2010, SIAM J. Control. Optim..

[24]  Karla Rost,et al.  Matrix exponentials and inversion of confluent Vandermonde matrices. , 2004 .