Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity

[1]  Donavan T. Cheng,et al.  Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology. , 2015, The Journal of molecular diagnostics : JMD.

[2]  M. Ladanyi,et al.  Prognostic Impact of KRAS Mutation Subtypes in 677 Patients with Metastatic Lung Adenocarcinomas , 2015, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[3]  David B. Darr,et al.  Mutation-specific RAS oncogenicity explains NRAS codon 61 selection in melanoma. , 2014, Cancer discovery.

[4]  Mingming Jia,et al.  COSMIC: exploring the world's knowledge of somatic mutations in human cancer , 2014, Nucleic Acids Res..

[5]  Yiling Lu,et al.  Naturally occurring neomorphic PIK3R1 mutations activate the MAPK pathway, dictating therapeutic response to MAPK pathway inhibitors. , 2014, Cancer cell.

[6]  Z. Szallasi,et al.  Spatial and temporal diversity in genomic instability processes defines lung cancer evolution , 2014, Science.

[7]  Thomas M. Keane,et al.  The mutational landscapes of genetic and chemical models of Kras-driven lung cancer , 2014, Nature.

[8]  Aparna Bhaduri,et al.  Recurrent point mutations in the kinetochore gene KNSTRN in cutaneous squamous cell carcinoma , 2014, Nature Genetics.

[9]  Gordon B Mills,et al.  The RAC1 P29S hotspot mutation in melanoma confers resistance to pharmacological inhibition of RAF. , 2014, Cancer research.

[10]  N. Socci,et al.  Synthetic lethality in ATM-deficient RAD50-mutant tumors underlies outlier response to cancer therapy. , 2014, Cancer discovery.

[11]  Lei Bao,et al.  AbsCN-seq: a statistical method to estimate tumor purity, ploidy and absolute copy numbers from next-generation sequencing data , 2014, Bioinform..

[12]  J. Moffat,et al.  Measuring error rates in genomic perturbation screens: gold standards for human functional genomics , 2014, bioRxiv.

[13]  Andrew H. Beck,et al.  A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. , 2014, Cancer discovery.

[14]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of urothelial bladder carcinoma , 2014, Nature.

[15]  S. Gabriel,et al.  Discovery and saturation analysis of cancer genes across 21 tumor types , 2014, Nature.

[16]  David Haussler,et al.  The UCSC Genome Browser database: 2014 update , 2013, Nucleic Acids Res..

[17]  Benjamin J. Raphael,et al.  Mutational landscape and significance across 12 major cancer types , 2013, Nature.

[18]  Gary D Bader,et al.  Comprehensive identification of mutational cancer driver genes across 12 tumor types , 2013, Scientific Reports.

[19]  Michael P. Schroeder,et al.  IntOGen-mutations identifies cancer drivers across tumor types , 2013, Nature Methods.

[20]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[21]  Somasekar Seshagiri,et al.  Oncogenic ERBB3 mutations in human cancers. , 2013, Cancer cell.

[22]  Jeffrey J Meyer,et al.  Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012. (5) , 2013 .

[23]  Steven J. M. Jones,et al.  Integrated genomic characterization of endometrial carcinoma , 2013, Nature.

[24]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[25]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[26]  E. Lander,et al.  Lessons from the Cancer Genome , 2013, Cell.

[27]  C. Sander,et al.  Genome Sequencing Identifies a Basis for Everolimus Sensitivity , 2012, Science.

[28]  N. Matsubara,et al.  Oncogenic PIK3CA mutations in colorectal cancers and polyps , 2012, International journal of cancer.

[29]  A. Sivachenko,et al.  A Landscape of Driver Mutations in Melanoma , 2012, Cell.

[30]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[31]  Matthew J. Davis,et al.  Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma , 2012, Nature Genetics.

[32]  A. Børresen-Dale,et al.  The Life History of 21 Breast Cancers , 2012, Cell.

[33]  Paul S Mischel,et al.  Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. , 2012, Cancer discovery.

[34]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[35]  Lauren E Haydu,et al.  Distinguishing Clinicopathologic Features of Patients with V600E and V600K BRAF-Mutant Metastatic Melanoma , 2012, Clinical Cancer Research.

[36]  John V Heymach,et al.  Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. , 2012, Journal of the National Cancer Institute.

[37]  Kenneth H. Buetow,et al.  CREBBP mutations in relapsed acute lymphoblastic leukaemia , 2011, Nature.

[38]  Barry S Taylor,et al.  Genomic and biological characterization of exon 4 KRAS mutations in human cancer. , 2010, Cancer research.

[39]  W. McLaren,et al.  Bioinformatics Applications Note Databases and Ontologies Deriving the Consequences of Genomic Variants with the Ensembl Api and Snp Effect Predictor , 2022 .

[40]  A. Pozzi,et al.  Signaling Pathways Regulating TC21-induced Tumorigenesis* , 2007, Journal of Biological Chemistry.

[41]  Andrew P. Weng,et al.  Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia , 2004, Science.

[42]  J. Schrader,et al.  Ras and relatives--job sharing and networking keep an old family together. , 2002, Experimental hematology.

[43]  Qin He,et al.  TC21 mediates transformation and cell survival via activation of phosphatidylinositol 3-kinase/Akt and NF-κB signaling pathway , 2002, Oncogene.

[44]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[45]  C. Marshall,et al.  Activation of the Ral and Phosphatidylinositol 3′ Kinase Signaling Pathways by the Ras-Related Protein TC21 , 2001, Molecular and Cellular Biology.

[46]  H. Paterson,et al.  Activation of the Raf/MAP kinase cascade by the Ras‐related protein TC21 is required for the TC21‐mediated transformation of NIH 3T3 cells , 1999, The EMBO journal.

[47]  K. Barker,et al.  Ras-related TC21 is activated by mutation in a breast cancer cell line, but infrequently in breast carcinomas in vivo. , 1998, British Journal of Cancer.

[48]  C. Der,et al.  Overexpression of the Ras-related TC21/R-Ras2 protein may contribute to the development of human breast cancers. , 1996, Oncogene.

[49]  S. Aaronson,et al.  A novel insertional mutation in the TC21 gene activates its transforming activity in a human leiomyosarcoma cell line. , 1995, Oncogene.

[50]  A. McKenna,et al.  The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. , 2014, Cancer discovery.

[51]  L. Chin,et al.  Therapeutics , Targets , and Chemical Biology The RAC 1 P 29 S Hotspot Mutation in Melanoma Confers Resistance to Pharmacological Inhibition of RAF , 2014 .

[52]  The Cancer Genome Atlas Research Network,et al.  Comprehensive molecular characterization of urothelial bladder carcinoma , 2014, Nature.

[53]  M Broggini,et al.  Different types of K-Ras mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer. , 2011, Annals of oncology : official journal of the European Society for Medical Oncology.

[54]  M. Stratton,et al.  A census of amplified and overexpressed human cancer genes , 2010, Nature Reviews Cancer.

[55]  D. Haussler,et al.  The Ucsc Genome Browser Database , 2002 .