Probabilistic models for personalizing web search

We present a new approach for personalizing Web search results to a specific user. Ranking functions for Web search engines are typically trained by machine learning algorithms using either direct human relevance judgments or indirect judgments obtained from click-through data from millions of users. The rankings are thus optimized to this generic population of users, not to any specific user. We propose a generative model of relevance which can be used to infer the relevance of a document to a specific user for a search query. The user-specific parameters of this generative model constitute a compact user profile. We show how to learn these profiles from a user's long-term search history. Our algorithm for computing the personalized ranking is simple and has little computational overhead. We evaluate our personalization approach using historical search data from thousands of users of a major Web search engine. Our findings demonstrate gains in retrieval performance for queries with high ambiguity, with particularly large improvements for acronym queries.

[1]  Kuansan Wang,et al.  PSkip: estimating relevance ranking quality from web search clickthrough data , 2009, KDD.

[2]  Hinrich Schütze,et al.  Personalized search , 2002, CACM.

[3]  Wei Yuan,et al.  Smoothing clickthrough data for web search ranking , 2009, SIGIR.

[4]  Ji-Rong Wen,et al.  WWW 2007 / Track: Search Session: Personalization A Largescale Evaluation and Analysis of Personalized Search Strategies ABSTRACT , 2022 .

[5]  Nick Craswell,et al.  Random walks on the click graph , 2007, SIGIR.

[6]  Xuehua Shen,et al.  Context-sensitive information retrieval using implicit feedback , 2005, SIGIR '05.

[7]  Ryen W. White,et al.  Predicting short-term interests using activity-based search context , 2010, CIKM.

[8]  Enhong Chen,et al.  Context-aware query suggestion by mining click-through and session data , 2008, KDD.

[9]  Susan T. Dumais,et al.  Potential for personalization , 2010, TCHI.

[10]  Susan Gauch,et al.  Personalizing Search Based on User Search Histories , 2004 .

[11]  Susan T. Dumais,et al.  Personalizing Search via Automated Analysis of Interests and Activities , 2005, SIGIR.

[12]  Enhong Chen,et al.  Context-aware query classification , 2009, SIGIR.

[13]  Susan T. Dumais,et al.  To personalize or not to personalize: modeling queries with variation in user intent , 2008, SIGIR '08.

[14]  Alexander Pretschner,et al.  Ontology-based personalized search and browsing , 2003, Web Intell. Agent Syst..

[15]  Clement T. Yu,et al.  Personalized Web search for improving retrieval effectiveness , 2004, IEEE Transactions on Knowledge and Data Engineering.

[16]  Filip Radlinski,et al.  Personalizing web search using long term browsing history , 2011, WSDM '11.

[17]  Ryen W. White,et al.  WWW 2007 / Track: Browsers and User Interfaces Session: Personalization Investigating Behavioral Variability in Web Search , 2022 .

[18]  Mohand Boughanem,et al.  A session based personalized search using an ontological user profile , 2009, SAC '09.

[19]  Wolfgang Nejdl,et al.  Using ODP metadata to personalize search , 2005, SIGIR '05.

[20]  Michael I. Jordan Graphical Models , 2003 .

[21]  ChengXiang Zhai,et al.  Mining long-term search history to improve search accuracy , 2006, KDD '06.

[22]  Alexander Pretschner,et al.  Ontology-Based User Profiles for Search and Browsing , 2002 .

[23]  Susan T. Dumais,et al.  Classification-enhanced ranking , 2010, WWW '10.