An active control model of laminated piezothermoelastic plate

Abstract After the Hamilton principle for thermo-mechanical–electric coupling problem is derived, the third-order shear deformation theory is extended to encompass piezothermoelastic laminated plates. Based on the velocity feedback control, a model for the active vibration control of laminated plates with piezothermoelastic sensor/actuator is established. An analytical solution is obtained for the case of general forces acting on a simply supported piezothermoelastic laminated plate. Numerical results are presented. The factors that influence the controlled responses of the plate are examined.

[1]  H. F. Tiersten,et al.  Linear Piezoelectric Plate Vibrations , 1969 .

[2]  T. R. Tauchert,et al.  PIEZOTHERMOELASTIC BEHAVIOR OF A LAMINATED PLATE , 1992 .

[3]  Horn-Sen Tzou,et al.  Sensor Mechanics of Distributed Shell Convolving Sensors Applied to Flexible Rings , 1993 .

[4]  N. I. Muskhelishvili,et al.  Problems of Continuum Mechanics , 1962 .

[5]  M. S. Howe Correlation of lift and thickness noise sources in vortex-airfoil interaction , 1990 .

[6]  Horn-Sen Tzou,et al.  Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vibration controls , 1989 .

[7]  Robert L. Mckenzie A correspondence of blunt-body nonequilibrium shock layers. , 1968 .

[8]  Craig A. Rogers,et al.  Laminate Plate Theory for Spatially Distributed Induced Strain Actuators , 1991 .

[9]  Satya N. Atluri,et al.  Effects of a Piezo-Actuator on a Finitely Deformed Beam Subjected to General Loading , 1989 .

[10]  Martin L. Dunn,et al.  Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites , 1993 .

[11]  R. D. Mindlin Equations of high frequency vibrations of thermopiezoelectric crystal plates , 1974 .

[12]  C. K. Lee Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships , 1990 .

[13]  Raymond D. Mindlin,et al.  On the Equations of Motion of Piezoelectric Crystals , 1989 .

[14]  Francis C. Moon,et al.  Modal Sensors/Actuators , 1990 .

[15]  Y. Y. Tang,et al.  DYNAMIC ANALYSIS OF A PIEZOTHERMOELASTIC LAMINATED PLATE , 1995 .

[16]  Singiresu S. Rao,et al.  Piezoelectricity and Its Use in Disturbance Sensing and Control of Flexible Structures: A Survey , 1994 .

[17]  Medhat A. Haroun,et al.  Reduced and selective integration techniques in the finite element analysis of plates , 1978 .

[18]  Vijay K. Varadan,et al.  Measurement of all the elastic and dielectric constants of poled PVDF films , 1989, Proceedings., IEEE Ultrasonics Symposium,.

[19]  John Anthony Mitchell,et al.  A refined hybrid plate theory for composite laminates with piezoelectric laminae , 1995 .

[20]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[21]  Inderjit Chopra,et al.  Structural modeling of composite beams with induced-strain actuators , 1993 .

[22]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[23]  W. Nowacki,et al.  Mathematical models of phenomenological piezoelectricity , 1985 .

[24]  K. Chandrashekhara,et al.  Active Vibration Control of Laminated Composite Plates Using Piezoelectric Devices: A Finite Element Approach , 1993 .

[25]  Kenneth B. Lazarus,et al.  Induced strain actuation of isotropic and anisotropic plates , 1991 .

[26]  W. Nowacki,et al.  SOME GENERAL THEOREMS OF THERMOPIEZOELECTRICITY , 1978 .