Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes

TP53 mutations are associated with poor clinical outcomes and treatment resistance in myelodysplastic syndromes. However, the biological and clinical relevance of the underlying mono- or bi-allelic state of the mutations is unclear. We analyzed 3,324 MDS patients for TP53 mutations and allelic imbalances of the TP53 locus and found that 1 in 3 TP53-mutated patients had mono-allelic targeting of the gene whereas 2 in 3 had multiple hits consistent with bi-allelic targeting. The established associations for TP53 with complex karyotype, high-risk presentation, poor survival and rapid leukemic transformation were specific to patients with multi-hit state only. TP53 multi-hit state predicted risk of death and leukemic transformation independently of the Revised International Prognostic Scoring System, while mono-allelic patients did not differ from TP53 wild-type patients. The separation by allelic state was retained in therapy-related MDS. Findings were validated in a cohort of 1,120 patients. Ascertainment of TP53 allelic state is critical for diagnosis, risk estimation and prognostication precision in MDS, and future correlative studies of treatment response should consider TP53 allelic state.

Benjamin L. Ebert | Michael R. Savona | John M. Bennett | Max F. Levine | Elsa Bernard | Michael Heuser | Valeria Santini | Luca Malcovati | Eva Hellström-Lindberg | Joop H. Jansen | Shigeru Chiba | Yangyu Zhou | Pierre Fenaux | Elli Papaemmanuil | Robert P. Hasserjian | Mario Cazzola | Olivier Kosmider | Seishi Ogawa | Gunes Gundem | Monika Belickova | Peter Valent | Takayuki Ishikawa | Francesc Sole | Uwe Platzbecker | A. Viale | Alexandra G. Smith | M. Cazzola | D. Neuberg | B. Ebert | F. Solé | E. Papaemmanuil | M. Heuser | F. Thol | G. Gundem | R. Bejar | S. Ogawa | P. Greenberg | M. Voso | L. Shih | Y. Shiozawa | M. Jädersten | S. Devlin | T. Yoshizato | J. Bennett | K. Stevenson | P. Fenaux | J. Cervera | E. Hellström-Lindberg | L. Adès | P. Valent | C. Finelli | J. Jansen | U. Germing | I. Kotsianidis | M. Fontenay | Y. Nannya | Y. Miyazaki | J. Boultwood | L. Malcovati | A. Takaori-Kondo | A. Pellagatti | M. Porta | A. A. van de Loosdrecht | U. Platzbecker | V. Santini | M. D. Della Porta | S. Chiba | Yanming Zhang | N. Gattermann | V. Klimek | Minal A. Patel | M. Belickova | G. Sanz | O. Kosmider | K. Vanness | K. Bolton | Heinz Tuechler | Julie Schanz | Guillermo Sanz | Yasushi Miyazaki | Ulrich Germing | Detlef Haase | Yasuhito Nannya | Andrea Pellagatti | Jacqueline Boultwood | Lee-Yung Shih | Matteo Giovanni Della Porta | M. Follo | Y. Atsuta | José Cervera | Felicitas Thol | H. Tsurumi | Martin Jädersten | Alexandra G Smith | Akifumi Takaori-Kondo | Minal Patel | Yusuke Shiozawa | Michaela Fontenay | Yanming Zhang | R. Hasserjian | M. Savona | E. Bernard | H. Tuechler | J. Medina-Martinez | R. Saiki | M. Levine | Juan E. Arango | Yangyu Zhou | C. Cargo | D. Haase | M. Creignou | Araxe Sarian | M. Tobiasson | R. Pinheiro | F. P. Santos | J. Schanz | S. Kasahara | T. Ishikawa | T. Kiguchi | C. Polprasert | C. Ganster | Laura Palomo | Yesenia Werner | K. Menghrajani | Yoshiko Atsuta | Donna S. Neuberg | Norbert Gattermann | Carlo Finelli | Sean M. Devlin | Agnès Viale | Rafael Bejar | Tetsuichi Yoshizato | Matilde Y. Follo | Arjan A. van de Loosdrecht | Kelly L. Bolton | Peter L. Greenberg | Juan S. Medina-Martinez | Ryunosuke Saiki | Catherine A. Cargo | Maria Creignou | Araxe Sarian | Magnus Tobiasson | Ronald F. Pinheiro | Ioannis Kotsianidis | Fabio P.S. Santos | Senji Kasahara | Hisashi Tsurumi | Toru Kiguchi | Chantana Polprasert | Virginia M. Klimek | Christina Ganster | Laura Palomo | Lionel Ades | Yesenia Werner | Katelynd Vanness | Kristen E. Stevenson | Kamal Menghrajani | Maria Teresa Voso | H. Elias | L. Palomo | Harold Elias | Kamal Menghrajani

[1]  Berthold Lausen,et al.  Maximally selected rank statistics , 1992 .

[2]  T. Jacks,et al.  Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Stratton,et al.  Clinical and biological implications of driver mutations in myelodysplastic syndromes. , 2013, Blood.

[4]  N. Socci,et al.  Accelerating Discovery of Functional Mutant Alleles in Cancer. , 2018, Cancer discovery.

[5]  Donavan T. Cheng,et al.  Mutational Landscape of Metastatic Cancer Revealed from Prospective Clinical Sequencing of 10,000 Patients , 2017, Nature Medicine.

[6]  A. Hagemeijer,et al.  Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  M. Kitagawa,et al.  p53 expression in myeloid cells of myelodysplastic syndromes. Association with evolution of overt leukemia. , 1994, The American journal of pathology.

[8]  Alexandra G. Smith,et al.  Cohort Profile: The Haematological Malignancy Research Network (HMRN): a UK population-based patient cohort , 2018, International journal of epidemiology.

[9]  Christopher A. Miller,et al.  TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. , 2016, The New England journal of medicine.

[10]  C. Cole,et al.  COSMIC: the catalogue of somatic mutations in cancer , 2011, Genome Biology.

[11]  Donna Neuberg,et al.  A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies , 2019, Science.

[12]  Dmitriy Sonkin,et al.  TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data , 2016, Human mutation.

[13]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[14]  A. Børresen-Dale,et al.  The Life History of 21 Breast Cancers , 2012, Cell.

[15]  N. Socci,et al.  Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity , 2015, Nature Biotechnology.

[16]  Eva Hellström-Lindberg,et al.  TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[17]  Moriah H Nissan,et al.  OncoKB: A Precision Oncology Knowledge Base. , 2017, JCO precision oncology.

[18]  Eric Talevich,et al.  CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing , 2016, PLoS Comput. Biol..

[19]  Shicai Wang,et al.  COSMIC: the Catalogue Of Somatic Mutations In Cancer , 2018, Nucleic Acids Res..

[20]  M. Ladanyi,et al.  Abstract 3409: MSK-IMPACT Heme: Validation and clinical experience of a comprehensive molecular profiling platform for hematologic malignancies , 2019, Molecular and Cellular Biology / Genetics.

[21]  S. Nahas,et al.  Impact of TP53 mutation variant allele frequency on phenotype and outcomes in myelodysplastic syndromes , 2016, Leukemia.

[22]  Aviad Tsherniak,et al.  Mutational processes shape the landscape of TP53 mutations in human cancer , 2018, Nature Genetics.

[23]  P. McSweeney Something for everyone. , 1988, Nursing times.

[24]  E. Roman,et al.  Myeloid malignancies in the real-world: Occurrence, progression and survival in the UK’s population-based Haematological Malignancy Research Network 2004–15 , 2016, Cancer epidemiology.

[25]  P. Campbell,et al.  Classification and Personalized Prognosis in Myeloproliferative Neoplasms , 2018, The New England journal of medicine.

[26]  D. Neuberg,et al.  Clinical effect of point mutations in myelodysplastic syndromes. , 2011, The New England journal of medicine.

[27]  Wendy S. W. Wong,et al.  Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs , 2012, Bioinform..

[28]  Benjamin J. Raphael,et al.  Mutational landscape and significance across 12 major cancer types , 2013, Nature.

[29]  Ryan L. Collins,et al.  Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes , 2019, bioRxiv.

[30]  Francisco J. Sánchez-Rivera,et al.  A Gain-of-Function p53-Mutant Oncogene Promotes Cell Fate Plasticity and Myeloid Leukemia through the Pluripotency Factor FOXH1. , 2019, Cancer discovery.

[31]  A. Levine The many faces of p53: something for everyone , 2019, Journal of molecular cell biology.

[32]  J. Weinstein,et al.  Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. , 2019, Cell reports.

[33]  S. Miyano,et al.  Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation. , 2017, Blood.

[34]  C. Steidl,et al.  New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[35]  P. Campbell,et al.  TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups , 2019, Leukemia.

[36]  U. Platzbecker Treatment of MDS. , 2019, Blood.

[37]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[38]  C Haferlach,et al.  Landscape of genetic lesions in 944 patients with myelodysplastic syndromes , 2013, Leukemia.

[39]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[40]  D. Neuberg,et al.  Prognostic Mutations in Myelodysplastic Syndrome after Stem‐Cell Transplantation , 2017, The New England journal of medicine.

[41]  Nicola D. Roberts,et al.  Genomic Classification and Prognosis in Acute Myeloid Leukemia. , 2016, The New England journal of medicine.

[42]  Kai Ye,et al.  Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads , 2009, Bioinform..

[43]  L. Strong,et al.  Gain of Function of a p53 Hot Spot Mutation in a Mouse Model of Li-Fraumeni Syndrome , 2004, Cell.

[44]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[45]  Magali Olivier,et al.  TP53 mutations in human cancers: origins, consequences, and clinical use. , 2010, Cold Spring Harbor perspectives in biology.

[46]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[47]  T. Jacks,et al.  Mutant p53 Gain of Function in Two Mouse Models of Li-Fraumeni Syndrome , 2004, Cell.

[48]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[49]  Christopher A. Miller,et al.  The Role of TP53 Mutations in the Origin and Evolution of Therapy-Related AML , 2014, Nature.

[50]  Deanna M. Church,et al.  ClinVar: public archive of relationships among sequence variation and human phenotype , 2013, Nucleic Acids Res..

[51]  Scott W. Lowe,et al.  Putting p53 in Context , 2017, Cell.

[52]  F. Collins,et al.  A new initiative on precision medicine. , 2015, The New England journal of medicine.

[53]  Luca Malcovati,et al.  Revised international prognostic scoring system for myelodysplastic syndromes. , 2012, Blood.

[54]  S. Fröhling,et al.  TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. , 2012, Blood.