A Short Review of Experimental and Computational Diagnostics for Radiofrequency Plasma Micro-thrusters

Experimental and computational diagnostics for radiofrequency plasma micro-thrusters are presented, based on the low power (10–100 W) electrothermal thruster prototype, Mini Pocket Rocket, developed for use on the Cubesat nanosatellite platform. Computer simulations include computer fluid dynamics simulations and particle in cell simulations while experimental results are obtained using a variety of electrostatic, optical and momentum probes. The output and limitations of each diagnostic are discussed within the context of device development for space use.

[1]  V. Linss,et al.  Gas temperature determination from rotational lines in non-equilibrium plasmas: a review , 2014 .

[2]  Christine Charles,et al.  Simulation of main plasma parameters of a cylindrical asymmetric capacitively coupled plasma micro-thruster using computational fluid dynamics , 2015, Front. Phys..

[3]  C. Charles,et al.  Particle in cell simulation of a radiofrequency plasma jet expanding in vacuum , 2015 .

[4]  M. Bak,et al.  On the quenching of excited electronic states of molecular nitrogen in nanosecond pulsed discharges in atmospheric pressure air , 2011 .

[5]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .

[6]  A. Rousseau,et al.  The excitation structure in a micro-hollow cathode discharge in the normal regime at medium argon pressure , 2010 .

[7]  A. Fruchtman Energizing and depletion of neutrals by a collisional plasma , 2008 .

[8]  C. Charles,et al.  Observations of a mode transition in a hydrogen hollow cathode discharge using phase resolved optical emission spectroscopy , 2014 .

[9]  David R. Miller,et al.  Effects of nozzle geometry on kinetics in free-jet expansions , 1984 .

[10]  Vladimir Kolobov,et al.  Fokker–Planck modeling of electron kinetics in plasmas and semiconductors , 2003 .

[11]  I. Katz,et al.  Fundamentals of Electric Propulsion: Ion and Hall Thrusters , 2008 .

[12]  J. Booth,et al.  Strong ionization asymmetry in a geometrically symmetric radio frequency capacitively coupled plasma induced by sawtooth voltage waveforms. , 2015, Physical review letters.

[13]  C. Charles,et al.  Nanosecond optical imaging spectroscopy of an electrothermal radiofrequency plasma thruster plume , 2013 .

[14]  C. Charles,et al.  Low-Weight Fixed Ceramic Capacitor Impedance Matching System for an Electrothermal Plasma Microthruster , 2014 .

[15]  Michael R. Rosen,et al.  Increased Cell–Cell Coupling Increases Infarct Size and Does not Decrease Incidence of Ventricular Tachycardia in Mice , 2011, Front. Physio..

[16]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[17]  Christine Charles,et al.  Measurement and modelling of a radiofrequency micro-thruster , 2012 .

[18]  E. Fishburne Transfer of Electronic Energy between a Metastable Argon Atom and a Nitrogen Molecule , 1967 .

[19]  R. Boswell,et al.  Enhanced sheath heating in capacitively coupled discharges due to non-sinusoidal voltage waveforms , 2012 .

[20]  R. Gottscho,et al.  Interactions between arrayed hollow cathodes , 2013 .

[21]  Wonho Choe,et al.  A comparative study of rotational temperatures using diatomic OH, O2 and N2+ molecular spectra emitted from atmospheric plasmas , 2003 .

[22]  T. E. Sheridan How big is a small Langmuir probe , 2000 .

[23]  Z. Ning,et al.  Spectroscopic study on rotational and vibrational temperature of N2 and N2+ in dual-frequency capacitively coupled plasma , 2008 .

[24]  R. Boswell,et al.  Particle-in-cell simulations of hollow cathode enhanced capacitively coupled radio frequency discharges , 2012 .

[25]  S. Reuter,et al.  Diagnostic based modelling of radio-frequency driven atmospheric pressure plasmas , 2010 .

[26]  C. Charles,et al.  Particle-In-Cell Simulations of a Current-Free Double Layer , 2010, 1301.3957.

[27]  J. L. Dunham The Energy Levels of a Rotating Vibrator , 1932 .

[28]  Yao-song Chen,et al.  2-D Fluid Simulation of Dual-Frequency Capacitively Coupled Plasma , 2009 .

[29]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[30]  Richard N. Zare,et al.  Franck-Condon factors for electronic band systems of molecular nitrogen , 1965 .

[31]  James L. Walsh,et al.  Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment , 2009 .

[32]  A. Wendt,et al.  Application of Excitation Cross-Section Measurements to Optical Plasma Diagnostics , 2017 .

[33]  C. Charles,et al.  Spatial evolution of EEPFs in a millimetre scale radio frequency argon plume , 2013 .

[34]  Christine Charles,et al.  Direct Measurement of Axial Momentum Imparted by an Electrothermal Radiofrequency Plasma Micro-Thruster , 2016, Front. Phys..

[35]  C. Charles,et al.  One-dimensional particle-in-cell simulation of a current-free double layer in an expanding plasma , 2005 .

[36]  Christine Charles,et al.  Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster , 2011 .

[37]  Vincent M. Donnelly,et al.  Optical emission actinometry and spectral line shapes in rf glow discharges , 1984 .

[38]  V. Schulz-von der Gathen,et al.  The challenge of revealing and tailoring the dynamics of radio-frequency plasmas , 2010 .

[39]  Direct measurement of neutral gas heating in a radio-frequency electrothermal plasma micro-thruster , 2013 .

[40]  M. Chaker,et al.  On the validity of neutral gas temperature by N2 rovibrational spectroscopy in low-pressure inductively coupled plasmas , 2011 .

[41]  H. Sawin,et al.  Neutral gas temperature measurements of high-power-density fluorocarbon plasmas by fitting swan bands of C2 molecules , 2006 .

[42]  D M Phillips,et al.  Determination of gas temperature from unresolved bands in the spectrum from a nitrogen discharge , 1976 .

[43]  Konstantinos P. Giapis,et al.  Maskless etching of silicon using patterned microdischarges , 2001 .

[44]  C. Charles,et al.  Volume and surface propellant heating in an electrothermal radio-frequency plasma micro-thruster , 2014 .

[45]  Koji Eriguchi,et al.  Numerical and experimental study of microwave-excited microplasma and micronozzle flow for a microplasma thruster , 2009 .