Magnetic Fields and Fragmentation of Filaments in the Hub of California-X

We present 850 μm polarization and C18O (3-2) molecular line observations toward the X-shaped nebula in the California molecular cloud using James Clerk Maxwell Telescope (JCMT)’s SCUBA-2/POL-2 and HARP instruments. The 850 μm emission shows that the observed region includes two elongated filamentary structures (Fil1 and Fil2) having chains of regularly spaced cores. We measured the mass per unit length of the filaments and found that Fil1 and Fil2 are thermally super- and subcritical, respectively, but both are subcritical if nonthermal turbulence is considered. The mean projected spacings ( ΔS¯ ) of the cores in Fil1 and Fil2 are 0.13 and 0.16 pc, respectively. ΔS¯ is smaller than 4× the filament width expected in the classical cylinder fragmentation model. The large-scale magnetic field orientations shown by Planck are perpendicular to the long axes of Fil1 and Fil2, while those in the filaments obtained from the high-resolution polarization data of JCMT are disturbed, but those in Fil1 tend to have longitudinal orientations. Using the modified Davis–Chandrasekhar–Fermi method, we estimated the magnetic field strengths (B pos) of the filaments, which are 110 ± 80 and 90 ± 60 μG, respectively. We calculated the gravitational, kinematic, and magnetic energies of the filaments, and found that the fraction of magnetic energy is larger than 60% in both filaments. We propose that the dominant magnetic energy may lead the filament to be fragmented into aligned cores as suggested by Tang et al., and the shorter core spacing can be due to a projection effect via the inclined geometry of the filaments or due to nonnegligible longitudinal magnetic fields in the case of Fil1.

[1]  Lei Zhu,et al.  The JCMT BISTRO-2 Survey: Magnetic Fields of the Massive DR21 Filament , 2022, The Astrophysical Journal.

[2]  P. Caselli,et al.  Velocity-Coherent Substructure in TMC-1: Inflow and Fragmentation , 2022, 2211.10535.

[3]  Lei Zhu,et al.  The JCMT BISTRO Survey: A Spiral Magnetic Field in a Hub-filament Structure, Monoceros R2 , 2022, The Astrophysical Journal.

[4]  H. Yoo,et al.  Evolution of the Hub-filament Structures in IC 5146 in the Context of the Energy Balance of Gravity, Turbulence, and Magnetic Field , 2022, The Astronomical Journal.

[5]  D. Ojha,et al.  Simultaneous Evidence of Edge Collapse and Hub-filament Configurations: A Rare Case Study of a Giant Molecular Filament, G45.3+0.1 , 2022, The Astrophysical Journal.

[6]  Lei Zhu,et al.  B-fields in Star-forming Region Observations (BISTRO): Magnetic Fields in the Filamentary Structures of Serpens Main , 2022, The Astrophysical Journal.

[7]  Lei Zhu,et al.  The JCMT BISTRO Survey: An 850/450 μm Polarization Study of NGC 2071IR in Orion B , 2021, The Astrophysical Journal.

[8]  Alan L. Clark,et al.  A Decade of SCUBA-2: A Comprehensive Guide to Calibrating 450 μm and 850 μm Continuum Data at the JCMT , 2021, The Astronomical Journal.

[9]  Lei Zhu,et al.  The JCMT BISTRO Survey: Revealing the Diverse Magnetic Field Morphologies in Taurus Dense Cores with Sensitive Submillimeter Polarimetry , 2021, The Astrophysical Journal Letters.

[10]  C. W. Lee,et al.  Dust polarized emission observations of NGC 6334 , 2020, 2012.13060.

[11]  P. Diep,et al.  Grain Alignment and Disruption by Radiative Torques in Dense Molecular Clouds and Implication for Polarization Holes , 2020, 2010.07742.

[12]  S. Reissl,et al.  Magnetized filamentary gas flows feeding the young embedded cluster in Serpens South , 2020, Nature Astronomy.

[13]  P. Palmeirim,et al.  Unifying low- and high-mass star formation through density-amplified hubs of filaments , 2020, Astronomy & Astrophysics.

[14]  P. Andre',et al.  Fragmentation of star-forming filaments in the X-shaped nebula of the California molecular cloud , 2020, 2002.05984.

[15]  T. Onaka,et al.  JCMT BISTRO Survey Observations of the Ophiuchus Molecular Cloud: Dust Grain Alignment Properties Inferred Using a Ricean Noise Model , 2019, The Astrophysical Journal.

[16]  P. Caselli,et al.  TRAO Survey of Nearby Filamentary Molecular Clouds, the Universal Nursery of Stars (TRAO FUNS). I. Dynamics and Chemistry of L1478 in the California Molecular Cloud , 2019, The Astrophysical Journal.

[17]  Lei Zhu,et al.  The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-forming Region , 2019, The Astrophysical Journal.

[18]  P. Koch,et al.  Gravity, Magnetic Field, and Turbulence: Relative Importance and Impact on Fragmentation in the Infrared Dark Cloud G34.43+00.24 , 2019, The Astrophysical Journal.

[19]  Lei Zhu,et al.  The JCMT BISTRO Survey: The Magnetic Field in the Starless Core ρ Ophiuchus C , 2019, The Astrophysical Journal.

[20]  A. Goodman,et al.  A Large Catalog of Accurate Distances to Local Molecular Clouds: The Gaia DR2 Edition , 2019, The Astrophysical Journal.

[21]  E. Pascale,et al.  JCMT BISTRO Survey: Magnetic Fields within the Hub-filament Structure in IC 5146 , 2018, The Astrophysical Journal.

[22]  Lei Zhu,et al.  Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements , 2018, The Astrophysical Journal.

[23]  Lei Zhu,et al.  A First Look at BISTRO Observations of the ρ Oph-A core , 2018, 1804.09313.

[24]  T. Henning,et al.  On the fragmentation of filaments in a molecular cloud simulation , 2017, 1711.01417.

[25]  P. Koch,et al.  The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament , 2017, 1707.05269.

[26]  Martin Houde,et al.  ALMA Observations of Dust Polarization and Molecular Line Emission from the Class 0 Protostellar Source Serpens SMM1 , 2017, 1707.03827.

[27]  M. Lombardi,et al.  X Marks the Spot: Nexus of Filaments, Cores, and Outflows in a Young Star-forming Region , 2017, 1704.08691.

[28]  Giorgio Savini,et al.  POL-2: a polarimeter for the James-Clerk-Maxwell telescope , 2016, Astronomical Telescopes + Instrumentation.

[29]  A. Whitworth,et al.  Perturbation growth in accreting filaments , 2016, 1602.07651.

[30]  E. Rosolowsky,et al.  Filament Identification through Mathematical Morphology , 2015, 1507.02289.

[31]  S. Walch,et al.  The impact of turbulence and magnetic field orientation on star-forming filaments , 2015, 1503.01659.

[32]  M. Tafalla,et al.  Chains of dense cores in the Taurus L1495/B213 complex , 2014, 1412.1083.

[33]  David Berry,et al.  FellWalker - A clump identification algorithm , 2014, Astron. Comput..

[34]  S. Plaszczynski,et al.  A novel estimator of the polarization amplitude from normally distributed Stokes parameters , 2013, 1312.0437.

[35]  Per Friberg,et al.  Scuba-2: On-sky calibration using submillimetre standard sources , 2013, 1301.3773.

[36]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[37]  P. Didelon,et al.  A multi-scale, multi-wavelength source extraction method: getsources , 2012, 1204.4508.

[38]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[39]  Bonn,et al.  MAMBO Mapping Of Spitzer c2d Small Clouds And Cores , 2008, 0805.4205.

[40]  D. Ward-Thompson,et al.  SCUBA Polarization Measurements of the Magnetic Field Strengths in the L183, L1544, and L43 Prestellar Cores , 2003, astro-ph/0305604.

[41]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[42]  J. Fiege,et al.  Helical fields and filamentary molecular clouds — I , 1999, astro-ph/9901096.

[43]  S. Miyama,et al.  Self-similar Solutions and the Stability of Collapsing Isothermal Filaments , 1992 .

[44]  Steven V. W. Beckwith,et al.  Particle Emissivity in Circumstellar Disks , 1991 .

[45]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[46]  J. Ostriker The Equilibrium of Polytropic and Isothermal Cylinders. , 1964 .

[47]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .

[48]  Lei Zhu,et al.  Observations of Magnetic Fields Surrounding LkHα 101 Taken by the BISTRO Survey with JCMT-POL-2 , 2021 .

[49]  T. Kudoh,et al.  Fragmentation of a Filamentary Cloud Permeated by a Perpendicular Magnetic Field , 2017 .