Enhancement of superconductivity in LFZ-grown BSCCO fibres by steeper axial temperature gradients

[1]  L. A. Angurel,et al.  Laser Induced Cylindrical Zone Melting of Bi2Sr2CaCu2O8+∂ Superconductors , 2009 .

[2]  M. F. Carrasco,et al.  Radial inhomogeneities induced by fiber diameter in electrically assisted LFZ growth of Bi-2212 , 2009 .

[3]  J. Deschamps,et al.  Growth directions of microstructures in directional solidification of crystalline materials. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  M. Rappaz,et al.  Grain Selection and Texture Evolution in Directionally Solidified Al-Zn Alloys , 2008 .

[5]  S. Awaji,et al.  Influence of intergrowth Bi2223 phase on the E–J properties of Bi2Sr2CaCu2Oδ whiskers , 2007 .

[6]  M. F. Carrasco,et al.  Bi–Sr–Ca–Cu–O superconducting fibres processed by the laser floating zone technique under different electrical current intensities , 2006 .

[7]  A. Mourachkine The oxygen isotope effect on critical temperature in superconducting copper oxides , 2003, cond-mat/0312229.

[8]  M. Ausloos,et al.  Analysis of experimental conditions for simultaneous measurements of transport and magnetotransport coefficients of high temperature superconductors , 2003, cond-mat/0309713.

[9]  L. A. Angurel,et al.  Correlation of normal and superconducting transport properties on textured Bi-2212 ceramic thin rods , 2002 .

[10]  I. Kang,et al.  Optimization of the Crystal Surface Temperature Distribution in the Single-Crystal Growth Process by the Czochralski Method , 2002 .

[11]  R. Feigelson,et al.  Thermal gradient control at the solid–liquid interface in the laser-heated pedestal growth technique , 2002 .

[12]  Rui F. Silva,et al.  Diffusion phenomena and crystallization path during the growth of LFZ Bi-Sr-Ca-Cu-O superconducting fibres , 2001 .

[13]  Limin Tong,et al.  Growth of high-quality Y2O3–ZrO2 single-crystal optical fibers for ultra-high-temperature fiber-optic sensors , 2000 .

[14]  N. Murayama,et al.  High-temperature thermoelectric properties of the sintered Bi2Sr2Ca1 − xYxCu2Oy (x = 0 – 1) , 2000 .

[15]  Rui F. Silva,et al.  Phase transformation kinetics during thermal annealing of LFZ Bi–Sr–Ca–Cu–O superconducting fibers in the range 800–870°C , 1999 .

[16]  L. A. Angurel,et al.  Growth rate effects on thin Bi2Sr2CaCu2O8+δ textured rods , 1998 .

[17]  Rui F. Silva,et al.  Influence of epitaxial growth on superconducting properties of LFZ BiSrCaCuO fibres. Part I. Crystal nucleation and growth , 1997 .

[18]  Z. Mao,et al.  The relations of specific heat anomaly with variation of oxygen content in BiSrCaCuO(2212) , 1997 .

[19]  Jungsic Oh,et al.  Analytical studies on the crystal-melt interface shape in the Czochralski process , 1997 .

[20]  M. Ausloos,et al.  The electronic contribution to the thermal conductivity of layered high- materials , 1996 .

[21]  J. Derby,et al.  Theoretical analysis and design considerations for float-zone refinement of electronic grade silicon sheets , 1995 .

[22]  E. Case,et al.  The effect of quenching media on the heat transfer coefficient of polycrystalline alumina , 1993, Journal of Materials Science.

[23]  M. Cima,et al.  Effects on Annealing on the Microstructure and Phase Chemistry of Directionally Solidified Bi2Sr2CaCu2O8. , 1991 .

[24]  M. Cima,et al.  Effects of Annealing on the Microstructure and Phase Chemistry of Directionally Solidified Bi2Sr2CaCu2O8 , 1991 .

[25]  M. Cima,et al.  Influence of growth parameters on the microstructure of directionally solidified Bi_2Sr_2CaCu_2O_y , 1990 .

[26]  R. Feigelson,et al.  Laser-heated pedestal growth of high Tc Bi-Sr-Ca-Cu-O superconducting fibers , 1988 .

[27]  J. Brice The cracking of Czochralski-grown crystals , 1977 .

[28]  J. C. Brice,et al.  Analysis of the temperature distribution in pulled crystals , 1968 .

[29]  B. Chalmers Principles of Solidification , 1964 .